1、高等数学教材完整一、函数与极限 21、集合的概念 22、常量与变量 32、函数 43、函数的简单性态 44、反函数一 55、复合函数 66、初等函数 67、双曲函数及反双曲函数 78、数列的极限 89、函数的极限 910、函数极限的运算规则 11一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。我们通常用大字拉丁字母 A、B、 C、表示集合,用小写拉丁字母 a、b、c表示集合中的元素。如果 a 是集合 A
2、 中的元素,就说 a 属于 A,记作:aA,否则就说 a 不属于 A,记作:a A。、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作 N、所有正整数组成的集合叫做正整数集。记作 N+或 N+。、全体整数组成的集合叫做整数集。记作 Z。、全体有理数组成的集合叫做有理数集。记作 Q。、全体实数组成的集合叫做实数集。记作 R。集合的表示方法、列举法:把集合的元素一一列举出来,并用“”括起来表示集合、描述法:用集合所有元素的共同特征来表示集合。集合间的基本关系、子集:一般地,对于两个集合 A、B,如果集合 A 中的任意一个元素都是集合 B 的元素,我们就说 A、B 有包含关系,称集合 A 为
3、集合 B 的子集,记作 A B(或 B A)。相等:如何集合 A 是集合 B 的子集,且集合 B 是集合 A 的子集,此时集合 A 中的元素与集合 B 中的元素完全一样,因此集合 A 与集合 B 相等,记作 AB 。、真子集:如何集合 A 是集合 B 的子集,但存在一个元素属于 B 但不属于 A,我们称集合 A 是集合 B 的真子集。、空集:我们把不含任何元素的集合叫做空集。记作 ,并规定,空集是任何集合的子集。、由上述集合之间的基本关系,可以得到下面的结论:、任何一个集合是它本身的子集。即 A A、对于集合 A、B、C,如果 A 是 B 的子集,B 是 C 的子集,则 A 是 C 的子集。、
4、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。集合的基本运算、并集:一般地,由所有属于集合 A 或属于集合 B 的元素组成的集合称为 A 与 B 的并集。记作AB 。(在求并集时,它们的公共元素在并集中只能出现一次。)即 ABx|xA,或 xB。、交集:一般地,由所有属于集合 A 且属于集合 B 的元素组成的集合称为 A 与 B 的交集。记作AB 。即 ABx|xA,且 xB。、补集:全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。通常记作 U。补集:对于一个集合 A,由全集 U 中不属于集合 A 的所有元素组成的集合称为集合
5、A 相对于全集U 的补集。简称为集合 A 的补集,记作 CUA。即 CUAx|xU,且 x A。集合中元素的个数、有限集:我们把含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。、用 card 来表示有限集中元素的个数。例如 Aa,b,c ,则 card(A)=3。、一般地,对任意两个集合 A、B,有card(A)+card(B)=card(AB)+card(AB)我的问题:1、学校里开运动会,设 Ax|x 是参加一百米跑的同学,B x|x 是参加二百米跑的同学,Cx|x 是参加四百米跑的同学。学校规定,每个参加上述比赛的同学最多只能参加两项,请你用集合的运算说明这项规定,并解释
6、以下集合运算的含义。、AB; 、AB 。2、在平面直角坐标系中,集合 C(x,y)|y=x表示直线 yx,从这个角度看,集合 D=(x,y)|方程组:2x-y=1,x+4y=5表示什么?集合 C、D 之间有什么关系?请分别用集合语言和几何语言说明这种关系。3、已知集合 A=x|1x3,B x|(x-1)(x-a)=0。试判断 B 是不是 A 的子集?是否存在实数 a 使AB 成立?4、对于有限集合 A、B、C,能不能找出这三个集合中元素个数与交集、并集元素个数之间的关系呢?5、无限集合 A1,2,3,4,n,B2,4,6,8,2n,你能设计一种比较这两个集合中元素个数多少的方法吗?2、常量与变
7、量、变量的定义:我们在观察某一现象的过程时,常常会遇到各种不同的量,其中有的量在过程中不起变化,我们把其称之为常量;有的量在过程中是变化的,也就是可以取不同的数值,我们则把其称之为变量。注:在过程中还有一种量,它虽然是变化的,但是它的变化相对于所研究的对象是极其微小的,我们则把它看作常量。、变量的表示:如果变量的变化是连续的,则常用区间来表示其变化范围。在数轴上来说,区间是指介于某两点之间的线段上点的全体。区间的名称 区间的满足的不等式 区间的记号 区间在数轴上的表示闭区间 axb a,b开区间 axb (a,b)半开区间 axb 或 axb (a,b或a,b)以上我们所述的都是有限区间,除此
8、之外,还有无限区间:a,+):表示不小于 a 的实数的全体,也可记为:ax+;(-,b):表示小于 b 的实数的全体,也可记为:-xb;(-,+):表示全体实数,也可记为:-x+注:其中-和+,分别读作“负无穷大“和“正无穷大“,它们不是数,仅仅是记号。、邻域:设 与 是两个实数,且 0.满足不等式x- 的实数 x 的全体称为点 的 邻域,点 称为此邻域的中心, 称为此邻域的半径。2、函数、函数的定义:如果当变量 x 在其变化范围内任意取定一个数值时,量 y 按照一定的法则 f 总有确定的数值与它对应,则称 y 是 x 的函数。变量 x 的变化范围叫做这个函数的定义域。通常 x 叫做自变量,y
9、 叫做函数值(或因变量),变量 y 的变化范围叫做这个函数的值域。注:为了表明 y 是 x 的函数,我们用记号 y=f(x)、y=F(x)等等来表示。这里的字母“f“、“F“表示 y 与 x 之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。这里我们只讨论单值函数。、函数相等由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,我们就称两个函数相等。、域函数的表示方法a):解析法:
10、用数学式子表示自变量和因变量之间的对应关系的方法即是解析法。例:直角坐标系中,半径为 r、圆心在原点的圆的方程是:x 2+y2=r2b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是表格法。例:在实际应用中,我们经常会用到的平方表,三角函数表等都是用表格法表示的函数。c):图示法:用坐标平面上曲线来表示函数的方法即是图示法。一般用横坐标表示自变量,纵坐标表示因变量。例:直角坐标系中,半径为 r、圆心在原点的圆用图示法表示为:3、函数的简单性态、函数的有界性:如果对属于某一区间 I 的所有 x 值总有f(x)M 成立,其中 M 是一个与 x 无关的常数,那么我们就称 f
11、(x)在区间 I 有界,否则便称无界。注:一个函数,如果在其整个定义域内有界,则称为有界函数例题:函数 cosx 在(-,+)内是有界的.、函数的单调性:如果函数 在区间(a,b)内随着 x 增大而增大,即:对于(a,b)内任意两点 x1及 x2,当 x1x 2时,有 ,则称函数 在区间(a,b)内是单调增加的。如果函数在区间(a,b)内随着 x 增大而减小,即:对于(a,b)内任意两点 x1及 x2,当 x1x 2时,有,则称函数 在区间(a,b)内是单调减小的。例题:函数 =x2在区间(-,0)上是单调减小的,在区间(0,+)上是单调增加的。、函数的奇偶性如果函数 对于定义域内的任意 x
12、都满足 = ,则 叫做偶函数;如果函数对于定义域内的任意 x 都满足 =- ,则 叫做奇函数。注:偶函数的图形关于 y 轴对称,奇函数的图形关于原点对称。、函数的周期性对于函数 ,若存在一个不为零的数 l,使得关系式 对于定义域内任何 x 值都成立,则 叫做周期函数, l 是 的周期。注:我们说的周期函数的周期是指最小正周期。例题:函数 是以 2 为周期的周期函数;函数 tgx 是以 为周期的周期函数。4、反函数、反函数的定义:设有函数 ,若变量 y 在函数的值域内任取一值 y0时,变量 x 在函数的定义域内必有一值 x0与之对应,即 ,那末变量 x 是变量 y 的函数.这个函数用来表示,称为
13、函数 的反函数.注:由此定义可知,函数 也是函数 的反函数。 、反函数的存在定理:若 在(a,b)上严格增(减),其值域为 R,则它的反函数必然在 R上确定,且严格增(减).注:严格增(减)即是单调增(减)例题:y=x 2,其定义域为(-,+),值域为0,+).对于 y 取定的非负值,可求得 x= .若我们不加条件,由 y 的值就不能唯一确定 x 的值,也就是在区间(-,+)上,函数不是严格增(减),故其没有反函数。如果我们加上条件,要求 x0,则对 y0、x= 就是 y=x2在要求 x0 时的反函数。即是:函数在此要求下严格增(减). 、反函数的性质:在同一坐标平面内, 与 的图形是关于直线
14、 y=x 对称的。例题:函数 与函数 互为反函数,则它们的图形在同一直角坐标系中是关于直线y=x 对称的。如右图所示: 5、复合函数复合函数的定义:若 y 是 u 的函数: ,而 u 又是 x 的函数: ,且 的函数值的全部或部分在 的定义域内,那末,y 通过 u 的联系也是 x 的函数,我们称后一个函数是由函数及 复合而成的函数,简称复合函数,记作 ,其中 u 叫做中间变量。注:并不是任意两个函数就能复合;复合函数还可以由更多函数构成。例题:函数 与函数 是不能复合成一个函数的。因为对于 的定义域(-,+)中的任何 x 值所对应的 u 值(都大于或等于 2),使都没有定义。6、初等函数、基本
15、初等函数:我们最常用的有五种基本初等函数,分别是:指数函数、对数函数、幂函数、三角函数及反三角函数。下面我们用表格来把它们总结一下:函数名称函数的记号 函数的图形 函数的性质指数函数a):不论 x 为何值,y 总为正数;b):当 x=0 时,y=1.对数函数a):其图形总位于 y 轴右侧,并过(1,0)点b):当 a1 时,在区间(0,1)的值为负;在区间(-,+)的值为正;在定义域内单调增.幂函数a 为任意实数这里只画出部分函数图形的一部分。令 a=m/na):当 m 为偶数 n 为奇数时,y 是偶函数;b):当 m,n 都是奇数时,y 是奇函数;c):当 m 奇 n 偶时,y 在(-,0)
16、无意义.三角函数(正弦函数)这里只写出了正弦函数a):正弦函数是以 2 为周期的周期函数b):正弦函数是奇函数且反三角函数(反正弦函数)这里只写出了反正弦函数a):由于此函数为多值函数,因此我们此函数值限制在-/2,/2上,并称其为反正弦函数的主值.、初等函数:由基本初等函数与常数经过有限次的有理运算及有限次的函数复合所产生并且能用一个解析式表出的函数称为初等函数.例题: 是初等函数。7、双曲函数及反双曲函数、双曲函数:在应用中我们经常遇到的双曲函数是:(用表格来描述)函数的名称 函数的表达式 函数的图形 函数的性质双曲正弦a):其定义域为:(-,+);b):是奇函数;c):在定义域内是单调增
17、双曲余弦a):其定义域为:(-,+);b):是偶函数;c):其图像过点(0,1);双曲正切a):其定义域为:(-,+);b):是奇函数;c):其图形夹在水平直线 y=1 及y=-1 之间;在定域内单调增;我们再来看一下双曲函数与三角函数的区别:双曲函数的性质 三角函数的性质shx 与 thx 是奇函数,chx 是偶函数 sinx 与 tanx 是奇函数,cosx 是偶函数它们都不是周期函数 都是周期函数双曲函数也有和差公式:、反双曲函数:双曲函数的反函数称为反双曲函数.a):反双曲正弦函数 其定义域为:(-,+);b):反双曲余弦函数 其定义域为:1,+);c):反双曲正切函数 其定义域为:(
18、-1,+1);8、数列的极限我们先来回忆一下初等数学中学习的数列的概念。 、数列:若按照一定的法则,有第一个数 a1,第二个数 a2,依次排列下去,使得任何一个正整数 n 对应着一个确定的数 an,那末,我们称这列有次序的数 a1,a 2,a n,为数列.数列中的每一个数叫做数列的项。第 n 项 an叫做数列的一般项或通项.注:我们也可以把数列 an看作自变量为正整数 n 的函数,即:a n= ,它的定义域是全体正整数 、极限:极限的概念是求实际问题的精确解答而产生的。例:我们可通过作圆的内接正多边形,近似求出圆的面积。设有一圆,首先作圆内接正六边形,把它的面积记为 A1;再作圆的内接正十二边
19、形,其面积记为 A2;再作圆的内接正二十四边形,其面积记为 A3;依次循下去(一般把内接正 62n-1边形的面积记为 An)可得一系列内接正多边形的面积:A 1,A 2,A 3,An,它们就构成一列有序数列。我们可以发现,当内接正多边形的边数无限增加时,An 也无限接近某一确定的数值(圆的面积),这个确定的数值在数学上被称为数列 A1,A 2,A 3,An, 当 n(读作 n 趋近于无穷大)的极限。注:上面这个例子就是我国古代数学家刘徽(公元三世纪)的割圆术。 、数列的极限:一般地,对于数列 来说,若存在任意给定的正数 (不论其多么小),总存在正整数 N,使得对于 nN 时的一切 不等式 都成
20、立,那末就称常数 a 是数列的极限,或者称数列 收敛于 a .记作: 或注:此定义中的正数 只有任意给定,不等式 才能表达出 与 a 无限接近的意思。且定义中的正整数 N 与任意给定的正数 是有关的,它是随着 的给定而选定的。、数列的极限的几何解释:在此我们可能不易理解这个概念,下面我们再给出它的一个几何解释,以使我们能理解它。数列 极限为 a 的一个几何解释:将常数 a 及数列 在数轴上用它们的对应点表示出来,再在数轴上作点 a 的 邻域即开区间(a-,a+),如下图所示:因不等式 与不等式 等价,故当 nN 时,所有的点 都落在开区间(a-,a+)内,而只有有限个(至多只有 N 个)在此区
21、间以外。注:至于如何求数列的极限,我们在以后会学习到,这里我们不作讨论。 、数列的有界性:对于数列 ,若存在着正数 M,使得一切 都满足不等式 M,则称数列 是有界的,若正数 M 不存在,则可说数列 是无界的。定理:若数列 收敛,那末数列 一定有界。注:有界的数列不一定收敛,即:数列有界是数列收敛的必要条件,但不是充分条件。例:数列 1,-1,1,-1,(-1) n+1, 是有界的,但它是发散的。9、函数的极限前面我们学习了数列的极限,已经知道数列可看作一类特殊的函数,即自变量取 1内的正整数,若自变量不再限于正整数的顺序,而是连续变化的,就成了函数。下面我们来学习函数的极限.函数的极值有两种
22、情况:a):自变量无限增大;b):自变量无限接近某一定点 x0,如果在这时,函数值无限接近于某一常数 A,就叫做函数存在极值。我们已知道函数的极值的情况,那么函数的极限如何呢 ?下面我们结合着数列的极限来学习一下函数极限的概念!、函数的极限(分两种情况)a):自变量趋向无穷大时函数的极限定义:设函数 ,若对于任意给定的正数 (不论其多么小 ),总存在着正数 X,使得对于适合不等式 的一切 x,所对应的函数值 都满足不等式那末常数 A 就叫做函数 当 x时的极限,记作:下面我们用表格把函数的极限与数列的极限对比一下:数列的极限的定义 函数的极限的定义存在数列 与常数 A,任给一正数 0,总可找到一正整数 N,对于 nN 的所有 都满足 则称数列 ,当 x时收敛于 A记: 。存在函数 与常数 A,任给一正数 0,总可找到一正数 X,对于适合的一切 x,都满足 ,函数 当 x时的极限为 A,记:。从上表我们发现了什么 ?试思考之b):自变量趋向有限值时函数的极限。我们先来看一个例子.例:函数 ,当 x1 时函数值的变化趋势如何?函数在 x=1 处无定义.我们知道对实数来讲,在数轴上任何一个有限的范围内,都有无穷多个点,为此我们把 x1 时函数值的变化趋势用表列出,如下图: