1、XXXX 学院 xxxx 届毕业论文第 I 页 共 I 页目 录1、引言 .11.1 液压千斤顶的分类 .12、液压千斤顶发展现状及常见故障排除 .12.1 国外发展情况 .12.2 国内发展情况 .22.3 液压千斤顶的特点 .22.4 液压千斤顶优缺点 .22.5 液压千斤顶常见故障排除 .33、液压千斤顶的组成结构及工作原理 .33.1 液压千斤顶的组成 .33.2 液压千斤顶的结构图 .43.3 液压千斤顶工作原理 .44、液压千斤顶结构设计 .54.1 内管设计 .54.2 外管设计 .64.3 活塞杆设计 .64.4 导向套的设计 .74.5 液压千斤顶活塞部位的密封 .95、液压
2、千斤顶装配图 .106、结论 .11参考文献 .12致谢 .13XXXX 学院 xxxx 届毕业论文第 0 页 共 13 页1、引言液压千斤顶是典型的利用液压传动的设备,液压千斤顶具有结构紧凑、体积小、重量轻、携带方便、性能可靠等优点,被广泛应用于流动性起重作业, 是维修、汽车、拖拉机等理想工具。其结构轻巧坚固、灵活可靠,一人即可携带和操作。千斤顶是用刚性顶举件作为工作装置,通过顶部托座或底部托爪在小行程内顶升重物的轻小起重设备。本次对液压千斤顶进行设计可以了解液压千斤顶的原理以及应用。通过查阅大量文献,和对千斤顶各部件进行设计使我熟悉了千斤顶内液压传动原理,同时也在以前书本学习的基础上对液压
3、传动加深了理解。1.1 液压千斤顶的分类液压千斤顶分为通用和专用两类。 通用液压千斤顶适用于起重高度不大的各种起重作业。它由油室、油泵、储油腔、活塞、摇把、油阀等主要部分组成。 工作时,只要往复扳动摇把,使手动油泵不断向油缸内压油,由于油缸内油压的不断增高,就迫使活塞及活塞上面的重物一起向上运动。打开回油阀,油缸内的高压油便流回储油腔,于是重物与活塞也就一起下落。专用液压千斤顶使专用的张拉机具,在制作预应力混凝土构件时,对预应力钢筋施加张力。专用液压千斤顶多为双作用式。常用的有穿心式和锥锚式两种。 2、液压千斤顶发展现状及常见故障排除2.1 国外发展情况早在 20 世纪 40 年代,卧式千斤顶
4、就已经开始在国外的汽车维修部门使用,但由于当时设计和使用上的原因,其尺寸较大,承载量较低。后来随着社会需求量的增大以及千斤顶本身技术的发展,在 90 年代初国外绝大部分用户已以卧式千斤顶替代了立式千斤顶。 在 90 年后期国外研制出了充气千斤顶和便携式液压千斤顶等新型千斤顶。充气千斤顶是由保加利亚一汽车运输研究所发明的,它用有弹性而又非常坚固的橡胶制成。使用时,用软管将千斤顶连在汽车的排气管上,经过 1520 秒,汽车将千斤顶鼓起,成为圆柱体。这种千斤顶可以把 115t 重的汽车顶起 70cm。Power-Riser 型便携式液压千斤顶则可用于所有类型的铁道车辆,包括装运三层汽车的货车、联运车
5、以XXXX 学院 xxxx 届毕业论文第 1 页 共 13 页及高车顶车辆。同时它具有一个将负载定位的机械锁定环,一个三维机械手,一个全封闭构架以及一个用于防止杂质进入液压系统的外置过滤器。另外一种名为 Truck Jack 的便携式液压千斤顶则可用于对已断裂的货车转向架弹簧进行快速的现场维修。该千斤顶能在现场从侧面对装有 70125t 级转向架的大多数卸载货车进行维修,并能完全由转向架侧架支撑住。它适用于车间或轨道上无需使用钢轨道碴或轨枕作承。2.2 国内发展情况我国千斤顶技术起步较晚,由于历史的原因直到 1979 年才接触到类似于国外卧式千斤顶这样的产品。但是经过全面改进和重新设计,在外形
6、美观、使用方便、承载力大、寿命长等方面,都超过了国外的同类产品,并且迅速打入欧美市场。经过多年设计与制造的实践,除了卧室斤顶以外,我国研究规格齐全并形成系列产品。2.3 液压千斤顶的特点液压千斤顶是一种将密封在油缸中的液体作为介质,把液压能转换为机械能从而将重物向上顶起的千斤顶。它结构简单、体积小、重量轻、举升力大、易于维修。但同时制造精度要求较高,若出现泄漏现象将引起举升汽车的下降,保险系数降低,使用其举升时易受部位和地方的限制。传统液压千斤顶由于手柄、活塞、油缸、密封圈、调节螺杆、底座和液压油组成。它利用了密闭容器中静止滚体的压力以同样大小向各个方向传递的特性。2.4 液压千斤顶优缺点液压
7、传动的优点: (1)体积小、重量轻,例如同功率液压马达的重量只有电动机的 1020%。因此惯性力较小,当突然过载或停车时,不会发生大的冲击; (2)能在给定范围内平稳的自动调节牵引速度,并可实现无极调速,且调速范围最大可达 1:2000(一般为1:100)。 ( 3)换向容易,在不改变电机旋转方向的情况下,可以较方便地实现工作机构旋转和直线往复运动的转换; (4)液压泵和液压马达之间用油管连接,在空间布置上彼此不受严格限制; (5)由于采用油液为工作介质,元件相对运动表面间能自行润滑,磨损小,使用寿命长; (6)操纵控制简便,自动化程度高; (7)容易实现过载保护。 (8)液压元件实现了标准化
8、、系列化、通用化、便于设计、制造和使用。 液压传动的缺点: XXXX 学院 xxxx 届毕业论文第 2 页 共 13 页(1)使用液压传动对维护的要求高,工作油要始终保持清洁; (2)对液压元件制造精度要求高,工艺复杂,成本较高; (3)液压元件维修较复杂,且需有较高的技术水平; (4)液压传动对油温变化较敏感,这会影响它的工作稳定性。因此液压传动不宜在很高或很低的温度下工作,一般工作温度在-1560范围内较合适; (5)液压传动在能量转化的过程中,特别是在节流调速系统中,其压力大,流量损失大,故系统效率较低。2.5 液压千斤顶常见故障排除1 重载时顶杆不能升起。 当千斤顶顶到某一高度后,顶杆
9、就不再升高这表明千斤顶内缺少工作油,应予补足。2 顶杆抖动。 这说明回油阀关闭不严,可将回油阀针再向里拧紧一些。若仍不能顶起,且压杆周围漏油,则为顶杆密封圈损坏,应予更换。若不能顶起且压杆周围也无漏油,再检查回油阀和进油阀门能否关严包括压杆筒体端面接合处的密封垫圈情况若上述均无异常,则为顶杆密封圈损坏或其固定螺栓松动,应予更换或拧紧。3 空载时顶杆就不能升起。 首先检查千斤顶的油量,不足时应添加。若千斤顶不缺油可将千斤顶回油阀针松开,拆下加油孔油塞,然后用脚踩住千斤顶底座,双手向上拔起顶杆再压下去,如此反复拔、压顶杆几次,以排除空气若做完上述检查后,拧紧加油孔油塞和回油阀,再试空顶若此时顶杆仍
10、不能上升,应将千斤顶放平,拆去回油阀,检查阀与座的接触情况是否良好,若有脏物,应予清除若有坑、槽、不平应予更换。最后检查进油阀门是否密封良好,顶杆密封圈有无损坏或脱落,若有则及时更换。4 漏油。 千斤顶的漏油部位多在座与筒体结合处、顶杆周围、回油阀的锁紧螺纹处、加油孔的固定油塞处、压杆周围等。漏油原因多为密封垫圈损坏必须及时更换。3、液压千斤顶的组成结构及工作原理3.1 液压千斤顶的组成液压系统主要由:动力元件(油泵) 、执行元件(油缸或液压马达) 、控制元件(各种阀) 、辅助元件和工作介质等五部分组成。动力元件(油泵) 它的作用是把液体利用原动机的机械能转换成液压力能,是液压传动中的动力部分
11、。XXXX 学院 xxxx 届毕业论文第 3 页 共 13 页执行元件(油缸、液压马达) 它是将液体的液压能转换成机械能。其中,油缸做直线运动,马达做旋转运动。控制元件 包括压力阀、流量阀和方向阀等,它们的作用是根据需要无级调节液压动机的速度,并对液压系统中工作液体的压力、流量和流向进行调节控制。辅助元件 除上述三部分以外的其它元件,包括压力表、滤油器、蓄能装置、冷却器、管件及邮箱等,它们同样十分重要。工作介质 工作介质是指各类液压传动中的液压油或乳化液,它经过油泵和液动机实现能量转换。3.2 液压千斤顶的结构图液压千斤顶结构图 1 所示,工作时通过上移 6 手柄使 7 小活塞向上运动从而形成
12、局部真空,油液从邮箱通过单向阀 9 被吸入小油缸,然后下压 6 手柄使 7 小活塞下压,把小油缸内的液压油通过 10 单向阀压入 3 大油缸内,从而推动 2 大活塞上移,反复动作顶起重物。通过 1 调节螺杆可以调整液压千斤顶的起始高度,使用完毕后扭转 4 回油阀杆,连通 3 大油缸和邮箱,油液直接流回邮箱,2 大活塞下落,大活塞下落速度取决于回油阀杆的扭转程度。图 1 液压千斤顶内部结构示意图XXXX 学院 xxxx 届毕业论文第 4 页 共 13 页3.3 液压千斤顶工作原理图 2 液压千斤顶工作原理图1油箱 2放油阀 3大缸 4大活塞 5单向阀 6杠杆手柄 7小活塞 8小缸体 9单向阀液压
13、千斤顶的工作原理如图所示,大缸体 3 和大活塞 4 组成举升缸;杠杆手柄 6、小缸体 8、活塞 7、单向阀 5 和 9 组成手动液压泵。活塞和缸体之间保持良好的配合关系,又能实现可靠的密封。当抬起手柄 6,使小活塞 7 向上移动,活塞下腔密封容积增大形成局部真空时,单向阀 9 打开,油箱中的油在大气压力的作用下通过吸油管进入活塞下腔,完成一次吸油动作。当用力压下手柄时,活塞 7 下移,其下腔密封容积减小,油压升高,单向阀 9 关闭,单向阀 5 打开,油液进入举升缸下腔,驱动活塞 4 使重物 G 上升一段距离,完成一次压油动作。反复地抬、压手柄,就能使油液不断地被压入举升缸,使重物不断升高,达到
14、起重的目的。如将放油阀 2 旋转 90(在实物上放油阀旋转角度是可以改变的) ,活塞 4 可以在自重和外力的作用下实现回程。这就是液压千斤顶的工作过程。4、液压千斤顶结构设计设计液压千斤顶的额定载荷为 19600N,初定额定压力为 15Mpa。千斤顶的最低使用高度为 192mm,最高使用高度为 277mm。4.1 内管设计XXXX 学院 xxxx 届毕业论文第 5 页 共 13 页根据以上设计要求可以得到如下计算结果:F=PA 得到 A=19600/9.8/150=13.3cm2所以内管的直径 D=42mm,长为 115mm,有效长度为 85mm 这里: F=外部作用力(f)A=内管的作用面积
15、(cm 2)P=被传递的压力(f/cm 2)内管的壁厚 为= 0+C1+C2根据公式 0PmaxD/2 p(m) p= b/N查机械设计手册可知 b=550(无缝钢管,牌号 20)N 为安全系数一般取 5 0150.042/(2550/5)=0.002m=2mm= 0+C1+C2=3mm上式中 C1为缸筒外径公差余量C2为腐蚀余缸筒壁厚的验算根据公式 Pn0.35 s(D12-D2)/D12MPa0.355500.00054/0.002304=50MPaPn=15MPa 所以缸筒的臂厚完足满足设计需要的要求。4.2 外管设计立式千斤顶的外管主要的作为是用来储存多余的液压油,在无电动源作用的情况
16、下,外管起了一个油箱的作用。由上可知道内管的内径为 42mm可得 V 内 =AH=3.142.128.5=117.7cm2外管的外径 D=66mm可得 V 外 =AH=3.143.3210=341.94cm2V= V 外 -V 内 =341.94-117.7=224.24cm2所以VV 内 ,完全满足要求。XXXX 学院 xxxx 届毕业论文第 6 页 共 13 页4.3 活塞杆设计活塞杆是液压缸传递力的重要零件,它承受拉力,压力,弯力,曲力和振动冲击等多种作用力,所以必须有足够的强度和刚度,由于千斤顶的液压缸无速比要求,可以根据液压缸的推力和拉力确定。可根椐内管的内径 D=42mm,初步确定
17、活塞杆的外径为 d=30mm活塞杆强度的计算:活塞杆在稳定的工况下,只受纵向推力,可按下式进行计算=F10 -6/(nd2/4)= p MPa可得 =1960010 -6/(0.033.14/4)=27.7查表可知 p的许用应力为 100-110MPa(无缝钢管)所以 p 所以活塞杆的设计要求强度完全满足。活塞杆弯曲稳定性验算可以用实用验算法活塞杆弯曲计算长度为 Lf= KSm 具体可以根据机械设计手册表中选取。4.4 导向套的设计活塞杆导向套装在内管的有杆侧端盖内,用以对活塞杆进行导行,内装有密封装置以保证缸筒有杆腔的密封,导向套采用非耐磨材料时,内圈可设导向环,用以作活塞杆的导向。图 3
18、导向套根据千斤顶的受力方式,可以作以下分析XXXX 学院 xxxx 届毕业论文第 7 页 共 13 页图 4 活塞杆导向套受力分析图如图 4 所示,垂直安放的千斤顶,无负载导向装置,受偏心轴向载荷 9800N,L=0.1m 时M0=F1L Nm Fd=K1 M0/LG N可得 M0=98000.1=9800NmFd= K1 M0/LG(N)可得 Fd=1.59800/0.057=2.5105N在上式中Fd-导向套承受的载荷,NM0- 外力作用于活塞上的力矩,N.mF1-作用于活塞上的偏心载荷,NL-载荷作用的偏心矩,mXXXX 学院 xxxx 届毕业论文第 8 页 共 13 页LG -活塞至导向套间距,m。D、d-分别为活塞及活塞杆外径,m4.5 液压千斤顶活塞部位的密封图 5 液压千斤顶活塞部位密封图在大活塞与大油缸配合部位采用的尼龙碗形密封件与 O 形密封圈组合而成的组合密封装置,由于橡胶具有良好的弹性,受力时迫使尼龙碗的唇边与缸壁贴合,起良好的密封作用。缺点如图:图 6 液压千斤顶活塞密封缺点分析图密封圈处在小孔口,缸中的超高压工作油在限位孔处存在极大的压力差,会使密封圈在此处遭受极大的撕拉作用。从而产生损伤,形成轴向沟痕。此沟痕随着起重物