高能量Na离子电池技术研究.pptx

举报
资源描述
1,R & D for High Energy Na-Ion Batteries,,2,Outline 130-years old battery !!! Towards sodium from lithium Na-Ion Batteries • N.E. materials • Electrolyte solution • Binder, SEI Layer & Passivation • P.E. materials • Na-Ion cell (Na-metal free) Future aspects,,3,3,YAI’s dry cell 屋井乾電池,In 1868, Leclanché (France) invented a wet cell, Zn//MnO2. In 1885, Mr. Sakizo YAI, who was an engineer working at TUS, improved Leclanché’s cell, and first developed the dry cell with starch glue gel-electrolyte.,YAI’s company commercializing dry cell 明治時代の屋井乾電池販 売部,“Dry Cell” first developed in 1885 at TUS,Sakizo YAI (1863~1927) 屋井先蔵,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,“Li-ion” is best, but…,Positive Electrode LiCoO2: FW = 7 + 59 + 32 = 98 NaCoO2: FW = 23 + 59 + 32 = 114,MgCoO2: FW = 24 + 59 + 32 = 115 (Me2/4+ is not operable yet.) Negative Electrode Independent from atomic weight of M,M,Electrochemical equivalent (g/e-),Abundance,Voltage of M-ion cells,3Li,6.9,XX,ca. 4 V,11Na 19K 12Mg,23 39 12.2 (= 24.3 / 2),◎ O O,ca. 3 V 3V? ca. 2 V,x 3.3,x 1.2 times only,,MassFraction / wt %,5,Elemental Abundance in Earth’s Crust Note: Pt = 5 ppb,10 1 0.1 0.01 1E-3 1E-4,100,> 500 ppm Earth's Crust* Upper Crust** Si AlFeCaNaK MgTi,10 % 1% 0.1 % 100 ppm 10 ppm 1 ppm,Lithium, Cobalt, & Copper are required for the Li ion batteries. *CRC Practical Handbook of Physical Properties of Rocks and Minerals, CRC Press, BocaRaton, FL, (1989). **S.R. Taylor, S.M. McLennan, The continental crust: Its composition and evolution, Blackwell Sci. Publ., Oxford, 330 pp. (1985).,Na-ion Li-ion less than20 ppm PMn V Cr ZnNi CuLi Co,Crust,Elemental strategy for large-scale battery,,,,,,,,,,,,,,,,,,,,,Li+ 0.68 Å,Na+ 0.97 Å,K+ 1.33 Å,@ octahedral coordination,Mg2+ 0.66 Å,Ca2+ 0.99 Å,Note: KOH aq. is used for Ni-MH and Ni-Cd, but LiOH and NaOH are not the case.,General concern; “Ion carrier” Lewis acidity: Mg2+ > Li+ > Na+ > K+ Because of smaller solvated-ion and less electrostatic interaction, Faster ionic conduction in polar liquid,Low-rate battery?,TEMA+,TEMA-BF4 for EDLC,Numberofscientificpapers,1 7,9 5,1 7,9 8,1 8,9 1,1 8,9 4,1 8,9 7,1 9,9 0,1 9,9 3,1 9,9 6,1 9,9 9,2 0,0 2,2 0,0 5,2 0,0 8,2 1,0 1,2 1,0 4,PositiveE.,Electrolyte,Reviewarticle,Others(solidelectrolyte,Na-Sbattery...),Delmas,Delmas,NaCrO2 Valence,Tech.,Abraham,Tirado,Doeff,140 130 120 110 100 90 80 70 60 50 40 30 20 10 0,Note: Data are based on Web of Knowledge on March. 6, 2014 and summarized by Mr. H. Yoshida.,2 mos. in 2014 7,Yearly number of papers on Na battery In 2013, 1st Na Battery Symp. NegativeE. Goodenough Balaya Amine Moritomo Hu, Kang Okubo Obrovac Johnson Palacín Tarascon Ceder Cao/Liu Our group: >100 cycles of Na/HC Whitacre Whittingham Komaba LixTiS2 Sauvage Okada NaTi2(PO4)3 Saadoune Tarascon Shacklette Exxon NaxMo2O4 Na/TiS2 Dahn Year,,,8,Na cell: 300 mAh/g,House of cards model Inserted Li+ or Na+,Na⁺ ions are hardly inserted into graphite, but are inserted into hard-carbon. However, its cycleability was not acceptable. D. Billaud et al., Electrochem. Acta (2002).,,9,ca. 250 mAh/g,THF solvent improved the performance from the 8 cycle data. Detailed study on electrolyte dependency,,,Q / mAhg-1,0,20,40,60,80,100,300 250 200 150 100 50,Cyclenumber / -,11,0 Na/HC (with PVdF) coin-cells,NaClO4 PC,Komaba et al., ACS Appl. Mater. Interfaces, 3, 4165 (2011). Mouad, Komaba, et al., Electrochem. Commun., in press (2014).,By NaPF6,Electrolyte dependency By FEC + NaPF6 NaPF6 PC+FEC NaPF6 EC:PC+FEC NaPF6 EC:PC NaClO4 PC+FEC NaPF6 PC By FEC,FEC,,,,,,,,,,,,,,,,,,Carbonization of sucrose (table sugar) Sucrose,Dewatering (180oC in air) Cooling , Milling,Sucrose,1 cm,1 cm 1 cm,“Caramel” cooking,Precursors Pyrolysis in Ar 5oC/min, 250oC 1oC/min, 450oC 10oC/min, 700 – 2000oC for 1 h Cooling Hard-carbons Ref.) A. Gibaud, J.S. Xue, J.R. Dahn, Carbon, 34, 499 (1996).,Our group, 53rd Battery Symp. in Jpn., 2E22, Nov-15 2012.,,,,,,,,Charge/Discharge Curves of Na cell & Li cell,Hysteresis,High capacity w/o hysteresis,Optimal temperature range for Na-insertion Different charge/discharge profiles between “Li” and “Na” cells.  Sloping profile region at relatively high voltage in Li/Na  Li+ and Na+ insert into between the hexagonal carbon layers,Heating temperature of HC samples increases, • Reversible capacity decreases for Li • Reversible capacity increases for Na,300 mAh/g,Our group,,53rd,12 Battery Symp. in Jpn., 2E22, Nov-15 2012.,Capacity/ mAhg-1,Voltage/ V,0,100,200,300,1 0,2,4 3,13,10,20,30,40,50,0 0,400 300 200 100,CycleNumber,(CC-CV mode),1,10,Long Cycle Test of a Na / HC cell (1300oC sample) 1M NaClO4 in PC:FEC (98:2),300 mAh g-1 with good capacity retention,Capacity/ mAhg-1 Mouad, Komaba et al., Phys. Chem. Chem. Phys., in press (2014),,,,,,,,Capacity/mAhg-1,Pb,Ge,Si,Sn (limited 500 mAh/g) HC,0,5,10,15,35,40,45,50,0,200,600 400,20 25 30 CycleNumber,Electro-alloying with Na Sn electrode delivers > 500 mAh/g. 800,Observed capacity: Sn > HC > Pb >> Si = Ge Our group., Electrochem. Commun., 21, 65 (2012).,Na~3.75X,Na~3X,14,Na~1X,,Q / mAhg-1,0,20,40,60,80,100,100 50 0,150,300 250 200,Binder Dependency,PANa CMC,PVDF Na / 1 M NaPF6 PC / HC cell,Excellent stability by PAANa and CMC,H,H,OR,CH2OR O H OR H,H,O,n,Cyclenumber / - Mouad, Komaba et al., Electrochem. Commun. in press (2014),,,,,,,,,,,,,,,,,,,,,16,Our group, ESSL (2009), JPS (2009)(2010), J. Phys. Chem. (2011), and Adv. Energy Mater. (2011), ChemSusChem (2012), ECS Electrochem Lett. (2013).,Binder coating assists SEI formation in LIB.,PC solvated Li+,Li+,The binder coating acts as “pre-formed SEI,” which reduces irreversible capacity of lithium-ion and sodium-ion as well.,PVDF is crystalline polymer. PAA, PANa, and CMC are amorphous.,Molecular bundles Good wettability (& defluorination) Uniform coverage Insoluble, slightly wettable,Self-Discharge Test of the Hard Carbon Electrode,Lithium cell Sodium cell,17,80% Capacity retention after a month storage,,18,Li+,Li+,Li+,Li+,Li+ ・Thicker surface layer ・Mainly organic compounds,Li cell,Na cell,SEI protects Na-inserted hard-carbon Characterization by SEM, TEM, TOF-SIMS, XPS, HAX-PES etc.,Note: SEI is first defined by Peled’s paper, J. Electrochem.Soc. (1979).,Na+,Na+,Na+ ・Thinner surface layer ・Mainly inorganic compounds,Na+,,,,,,,,,,,,,,,Voltage / V,O3-type NaCoO2: Unsatisfactory for Battery,1.5 V,Li+ Na+,“LiCoO2” vs. “NaCoO2”,0.76 Å 1.02 Å,MeO2 layer,Li or NaOct.,O3-type layered oxide,Li/Li+(−3.05 V),Na/Na+(−2.71 V) 0.34 V lower potential is expected for Na. 19,0,50,100,150,200,1,3 2,4,5,Na/ Na1-xCoO2 Lower energy density for the Na insertion materials,Capacity / mAhg-1,Li / Li1-xCoO2,CoO2,,,,,,,,,,,,,,,,,,,10 years ago, NaFeO2 does work !,NaFeIIIO2,Na1-xFeIVxFeIII1-xO2 + x (Na+ + e-) Fe3+/4+ redox !!! Differing from LiFeO2,Result of NaFeO2 motivated me in 2004. 20,3.3 V flat voltage Na // Na1-xFeO2 Ref.) Okada’s group, The 45th Battery Symp. in Japan, # 3B23, Nov-29, 2004.,,,,,,,,,,E/V,Solid solution of O3-type NaFeO2 and NaCoO2,0,30,60,90,120,150,180,1,4 3 2,2 1,4 3,2 1,4 3,Excellent Rate-performance,NaFeO2,C/20,NaFe1/2Co1/2O2 C/20,NaCoO2 C/20,C/10,C/10 C/5,C/10 C/5,2C C/2 1C (241 mA g-1),1C C/5,1C 20C10C 5C,30C (7.23 A g-1),5C,10C,1 μm,1 μm,1μm,-1 Yoshida, Yabuuchi and Komaba, Electrochem. Commun., 34, 60-63 (2013). 21,Voltage/ Vvs. Na,Voltage/ Vvs. Li,Q/ mAhg,Q/ mAhg,0,20,40,60,80,100,120,2 1 0,3,4,-1,0,20,40,60,80,100,120,3 2 1,4,5,-1,O3-type LiCrO2,O3-type NaCrO2,Reversible Na Insertion due to Cr(III)/Cr(IV) redox in solid Na / NaClO4 PC / NaCrO2 2.0 – 3.6 V vs. Na at 25 mA g-1 1, 10, 20th cycle,10, 5, 2,,1,20, 10, 1,Li and Na systems are not identical.,No Capacity,due to disproportionation of Cr(IV) Li / LiClO4 PC / LiCrO2 20 mA g-1 1, 2, 5, 10th cycle,Despite of the same crystal structure, layered Cr oxides with Li and Na are inactive and active, respectively. Our group, Electrochem. Commun., 12, 355-358 (2010).,,,,,,,23,How safe is Na-ion?,Li0.5CoO2 Li0FePO4 No exothermic behavior for Na0.5CrO2,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,E / V,E / V,0,50,100,150,4 3 2 1,0,50,100,150,4 3 2 1,24,O3-NaNi1/2Mn1/2O2 and O3-NaFeO2,Synthesis and electrochemical Na extraction of their solid solution, NaFex(Ni1/2Mn1/2)1-xO2,O3-NaFeO2 Fe3/4+ redox at 3.3 V, 100 mAh/g but severe fade,Q / mAhg-1 Okada et al., 210th ECS Meeting (2006). Our group, Electrochemistry (2012).,O3-NaNi1/2Mn1/2O2 140 mAh/g at 3.0 V with good capacity retention,Q / mAhg-1 Our group, ECS Trans. (2009), and Inorg. Chem. (2012), etc.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,Voltage/ V,0,50,100,150,5 4 3 2 1 0,O3-type NaFe0.4(Ni1/2Mn1/2)0.6O2 10th←1st 10th←1st 140 mAh/g & good retention 1 M NaClO4 in PC:FEC (98:2),Capacity/ mAhg-1 Our group, J. Electrochem. Soc., 160 (5), A3131 (2013).,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,a,b,A B C A B C A B,MeO2 layer Li or NaOct. c,Octahederal site Prismatic site,26,O3-type LiCoO2, Li[Li1/3Mn2/3]O2, NaCoO2, NaFeO2 …,0.76 Å,1.02 Å,<<,<<,0.55 Å,Co3+,Li+,Na+,Li-/Na-ion crystallography: Concern on “Ion Size”,P2-type LixCoO2,LixMnO2,, NaxCoO2, NaxMnO2 x = 2/3,,,,,,,,,,,Voltage/ V,27,P2-Na2/3[Fe1/2Mn1/2]O2,Structure of Nax[Fe1/2Mn1/2]O2,0,50,100,150,200,0,5 4 3 2 1,Capacity / mAhg-1,FeIV1/2MnIV1/2O2 + Na+ + e-,From XAFS and Mössbauer NaFeIII1/2MnIII1/2O2,From XRD, phase transition reversibly occurs between P2 and OP4 stacking. N. Yabuuchi, S. Komaba et al., Nature Materials (2012).,,,,E vs. Li / V,Evs. Na / V,0,50,100,150,200,0,1,5 4 3 2,Na2FePO4F,Negative electrode hard-carbon,0.3,O3-NaCoO2,Potential candidates for P.E. P2-Na2/3Ni1/3Mn1/2Ti1/6O2 O3-NaFe0.4Ni0.3Mn0.3O2 O3-NaFe1/2Co1/2O2 P2-NaxFe1/2Mn1/2O2,-1 Energy density of Na-ion cell ?,,,,,Voltage/ V,29,x = 1/6 Vave. = 3.70 V 470 Wh kg-1,x = 1/3 Vave. = 3.62 V 437 Wh kg-1,0,30,150,180,2,4 3,2 5,5 4 3,2,5 4 3,60 90 120 Capacity/ mAhg-1,Na/Na2/3Ni1/3Mn1/2Ti1/6O2 (x = 1/6) cell demonstrates high energy density,1,3,10,10 3,1,10 3 1,Good cyclability,P2-type Na2/3[Ni1/3(Mn2/3-xTix)]O2 x =0 Vave. = 3.67 V 556 Wh kg-1,with excellent capacity retention. Our group and BASF, Chem. Comm., in press (2014),Ave. E / V(vs. Na+/Na),50,100,150,200,250,2,3,4,30,200,250,300,350,P2-Na2/3[Ni1/3Mn1/2Ti1/6]O2 (TUS-BASF),+1/3 Na,O3-NaNi1/2Mn1/2O2,P2-Na5/6Li1/6Mn5/6O2,Na2FePO4F,O3-NaCrO2,vs. Hard Carbon as negative (300 mAh g-1, Eave. = 0.3 V vs. Na),TUS (2011),P2-Na0.85Li0.17Ni0.21Mn0.64O2 (Johnson, ANL) O3-NaFeO2 (Okada 2006, TUS 2012),Estimating Energy of Na-ion cells Energy Density / Wh (kg-1 of positive & negative),O3-NaFe0.4Ni0.3Mn0.3O2 (TUS-Sumitomo) O3-NaFe0.5Co0.5O2 O3-NaNi1/3Co1/3Fe1/3O2 (Ceder, MIT) P2-Na2/3Fe1/2Mn1/2O2,Graphite/LiMn2O4,Q / mAh(g-1 of positive) Our group and BASF, Chem. Comm., in press (2014),,,,,31,“Na-ion full-cell,” free from Na metal,,,,,,,,,,,,,,,,,,,,,,,,,,,32,Industrial use,Stationary,v. What is the long term benefit of solving the problem? Picture from Nikkei BP journal,High power battery for HEV application,Large-format and low-cost batteries for EES Rechargeable Na-ion Batteries for Sustainable Energy Society,After 1991 Li-ion battery on the market,Present Li-ion for EV and HEV,Near future Broad application,automated vehicle,wind power station,battery-equipped house,solar power plant,port crane,hybrid train,electric bus Transportation,forklift,Higher energy and power,Low cost,,,,,,,Summary,Crystallography Intercalation Ionic Diffusion Passivation Solvation Kinetics Thermodynamics Better battery performance (including new science and new technology),Li-ion chemistry,Na-ion chemistry,,34,NISSAN, Mitsubishi Chem., Sumitomo Chem. BASF, GS Yuasa, etc. This study was in part supported by the NEXT Program of JSPS, and ESICB, MEXT, and industrial partners.,Coworkers and industrial partners,Reactivity:,Li << Na << K << Rb …,Cell voltage: Melting point:,Li > Na … Li 179˚C, Na 98˚C,Make sure to handle sodium metal safely.,35,Message for students, Na metal is really dangerous than Li metal.,
展开阅读全文
相关搜索
温馨提示:
文客久久所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。

当前位置:首页 > 重点行业资料库 > 1


Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。