资源描述
1,R & D for High Energy Na-Ion Batteries,,2,Outline
130-years old battery !!!
Towards sodium from lithium
Na-Ion Batteries
• N.E. materials
• Electrolyte solution
• Binder, SEI Layer & Passivation
• P.E. materials
• Na-Ion cell (Na-metal free)
Future aspects,,3,3,YAI’s dry cell
屋井乾電池,In 1868, Leclanché (France) invented a wet cell, Zn//MnO2.
In 1885, Mr. Sakizo YAI, who was an engineer working at TUS,
improved Leclanché’s cell, and first developed the dry cell with
starch glue gel-electrolyte.,YAI’s company
commercializing dry cell
明治時代の屋井乾電池販
売部,“Dry Cell” first developed in 1885 at TUS,Sakizo YAI (1863~1927)
屋井先蔵,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,“Li-ion” is best, but…,Positive Electrode
LiCoO2: FW = 7 + 59 + 32 = 98
NaCoO2: FW = 23 + 59 + 32 = 114,MgCoO2: FW = 24 + 59 + 32 = 115 (Me2/4+ is not operable yet.)
Negative Electrode
Independent from atomic weight of M,M,Electrochemical
equivalent (g/e-),Abundance,Voltage
of M-ion cells,3Li,6.9,XX,ca. 4 V,11Na
19K
12Mg,23
39
12.2 (= 24.3 / 2),◎
O
O,ca. 3 V
3V?
ca. 2 V,x 3.3,x 1.2 times only,,MassFraction / wt %,5,Elemental Abundance in Earth’s Crust
Note: Pt = 5 ppb,10
1
0.1
0.01
1E-3
1E-4,100,> 500 ppm
Earth's Crust*
Upper Crust**
Si AlFeCaNaK MgTi,10 %
1%
0.1 %
100 ppm
10 ppm
1 ppm,Lithium, Cobalt, & Copper are required for the Li ion batteries.
*CRC Practical Handbook of Physical Properties of Rocks and Minerals, CRC Press, BocaRaton, FL, (1989).
**S.R. Taylor, S.M. McLennan, The continental crust: Its composition and evolution, Blackwell Sci. Publ., Oxford, 330 pp. (1985).,Na-ion
Li-ion
less than20 ppm
PMn V Cr ZnNi CuLi Co,Crust,Elemental strategy for large-scale battery,,,,,,,,,,,,,,,,,,,,,Li+
0.68 Å,Na+
0.97 Å,K+
1.33 Å,@ octahedral coordination,Mg2+
0.66 Å,Ca2+
0.99 Å,Note: KOH aq. is used
for Ni-MH and Ni-Cd,
but LiOH and NaOH
are not the case.,General concern; “Ion carrier”
Lewis acidity: Mg2+ > Li+ > Na+ > K+
Because of smaller solvated-ion and less electrostatic interaction,
Faster ionic conduction in polar liquid,Low-rate battery?,TEMA+,TEMA-BF4
for EDLC,Numberofscientificpapers,1 7,9 5,1 7,9 8,1 8,9 1,1 8,9 4,1 8,9 7,1 9,9 0,1 9,9 3,1 9,9 6,1 9,9 9,2 0,0 2,2 0,0 5,2 0,0 8,2 1,0 1,2 1,0 4,PositiveE.,Electrolyte,Reviewarticle,Others(solidelectrolyte,Na-Sbattery...),Delmas,Delmas,NaCrO2 Valence,Tech.,Abraham,Tirado,Doeff,140
130
120
110
100
90
80
70
60
50
40
30
20
10
0,Note: Data are based on Web of Knowledge on March. 6, 2014 and summarized by Mr. H. Yoshida.,2 mos. in 2014
7,Yearly number of papers on Na battery
In 2013,
1st Na Battery Symp.
NegativeE.
Goodenough
Balaya
Amine
Moritomo
Hu, Kang
Okubo
Obrovac
Johnson
Palacín
Tarascon
Ceder
Cao/Liu
Our group:
>100 cycles of Na/HC
Whitacre
Whittingham Komaba
LixTiS2 Sauvage
Okada
NaTi2(PO4)3 Saadoune
Tarascon Shacklette
Exxon NaxMo2O4
Na/TiS2 Dahn
Year,,,8,Na cell: 300 mAh/g,House of cards model
Inserted Li+ or Na+,Na⁺ ions are hardly inserted into graphite,
but are inserted into hard-carbon.
However, its cycleability was not acceptable.
D. Billaud et al., Electrochem. Acta (2002).,,9,ca. 250 mAh/g,THF solvent improved the
performance from the 8 cycle data.
Detailed study on
electrolyte dependency,,,Q / mAhg-1,0,20,40,60,80,100,300
250
200
150
100
50,Cyclenumber / -,11,0 Na/HC (with PVdF) coin-cells,NaClO4 PC,Komaba et al., ACS Appl. Mater. Interfaces, 3, 4165 (2011).
Mouad, Komaba, et al., Electrochem. Commun., in press (2014).,By NaPF6,Electrolyte dependency
By FEC + NaPF6
NaPF6 PC+FEC
NaPF6 EC:PC+FEC
NaPF6 EC:PC
NaClO4 PC+FEC
NaPF6 PC
By FEC,FEC,,,,,,,,,,,,,,,,,,Carbonization of sucrose (table sugar)
Sucrose,Dewatering (180oC in air)
Cooling , Milling,Sucrose,1 cm,1 cm
1 cm,“Caramel” cooking,Precursors
Pyrolysis in Ar
5oC/min, 250oC
1oC/min, 450oC
10oC/min, 700 – 2000oC for 1 h
Cooling
Hard-carbons
Ref.) A. Gibaud, J.S. Xue, J.R. Dahn, Carbon, 34, 499 (1996).,Our group, 53rd Battery Symp. in Jpn., 2E22, Nov-15 2012.,,,,,,,,Charge/Discharge Curves of Na cell & Li cell,Hysteresis,High capacity
w/o hysteresis,Optimal temperature
range for Na-insertion
Different charge/discharge profiles
between “Li” and “Na” cells.
Sloping profile region at
relatively high voltage in Li/Na
Li+ and Na+ insert into between
the hexagonal carbon layers,Heating temperature of HC samples
increases,
• Reversible capacity decreases for Li
• Reversible capacity increases for Na,300 mAh/g,Our group,,53rd,12
Battery Symp. in Jpn., 2E22, Nov-15 2012.,Capacity/ mAhg-1,Voltage/ V,0,100,200,300,1
0,2,4
3,13,10,20,30,40,50,0
0,400
300
200
100,CycleNumber,(CC-CV mode),1,10,Long Cycle Test of a Na / HC cell (1300oC sample)
1M NaClO4 in PC:FEC (98:2),300 mAh g-1 with
good capacity retention,Capacity/ mAhg-1
Mouad, Komaba et al., Phys. Chem. Chem. Phys., in press (2014),,,,,,,,Capacity/mAhg-1,Pb,Ge,Si,Sn (limited 500 mAh/g)
HC,0,5,10,15,35,40,45,50,0,200,600
400,20 25 30
CycleNumber,Electro-alloying with Na
Sn electrode delivers > 500 mAh/g.
800,Observed capacity: Sn > HC > Pb >> Si = Ge
Our group., Electrochem. Commun., 21, 65 (2012).,Na~3.75X,Na~3X,14,Na~1X,,Q / mAhg-1,0,20,40,60,80,100,100
50
0,150,300
250
200,Binder Dependency,PANa
CMC,PVDF
Na / 1 M NaPF6 PC / HC cell,Excellent
stability by
PAANa and CMC,H,H,OR,CH2OR
O
H
OR H,H,O,n,Cyclenumber / -
Mouad, Komaba et al., Electrochem. Commun. in press (2014),,,,,,,,,,,,,,,,,,,,,16,Our group, ESSL (2009), JPS (2009)(2010), J. Phys. Chem. (2011), and Adv. Energy Mater. (2011),
ChemSusChem (2012), ECS Electrochem Lett. (2013).,Binder coating assists SEI formation in LIB.,PC solvated Li+,Li+,The binder coating
acts as
“pre-formed SEI,”
which reduces
irreversible capacity
of lithium-ion and
sodium-ion as well.,PVDF is crystalline polymer.
PAA, PANa, and CMC are amorphous.,Molecular bundles
Good wettability
(& defluorination)
Uniform coverage
Insoluble, slightly wettable,Self-Discharge Test of the Hard Carbon Electrode,Lithium cell
Sodium cell,17,80% Capacity retention
after a month storage,,18,Li+,Li+,Li+,Li+,Li+
・Thicker surface layer
・Mainly organic compounds,Li cell,Na cell,SEI protects Na-inserted hard-carbon
Characterization by SEM, TEM, TOF-SIMS, XPS, HAX-PES etc.,Note: SEI is first defined by Peled’s paper, J. Electrochem.Soc. (1979).,Na+,Na+,Na+
・Thinner surface layer
・Mainly inorganic compounds,Na+,,,,,,,,,,,,,,,Voltage / V,O3-type NaCoO2: Unsatisfactory for Battery,1.5 V,Li+
Na+,“LiCoO2” vs. “NaCoO2”,0.76 Å
1.02 Å,MeO2
layer,Li or NaOct.,O3-type layered oxide,Li/Li+(−3.05 V),Na/Na+(−2.71 V)
0.34 V lower potential is
expected for Na.
19,0,50,100,150,200,1,3
2,4,5,Na/ Na1-xCoO2
Lower energy density for the
Na insertion materials,Capacity / mAhg-1,Li / Li1-xCoO2,CoO2,,,,,,,,,,,,,,,,,,,10 years ago, NaFeO2 does work !,NaFeIIIO2,Na1-xFeIVxFeIII1-xO2 + x (Na+ + e-)
Fe3+/4+ redox !!!
Differing from LiFeO2,Result of NaFeO2 motivated
me in 2004.
20,3.3 V flat voltage
Na // Na1-xFeO2
Ref.) Okada’s group, The 45th Battery Symp.
in Japan, # 3B23, Nov-29, 2004.,,,,,,,,,,E/V,Solid solution of O3-type NaFeO2 and NaCoO2,0,30,60,90,120,150,180,1,4
3
2,2
1,4
3,2
1,4
3,Excellent
Rate-performance,NaFeO2,C/20,NaFe1/2Co1/2O2
C/20,NaCoO2
C/20,C/10,C/10
C/5,C/10
C/5,2C C/2
1C
(241 mA g-1),1C C/5,1C
20C10C 5C,30C
(7.23 A g-1),5C,10C,1 μm,1 μm,1μm,-1
Yoshida, Yabuuchi and Komaba, Electrochem. Commun., 34, 60-63 (2013). 21,Voltage/ Vvs. Na,Voltage/ Vvs. Li,Q/ mAhg,Q/ mAhg,0,20,40,60,80,100,120,2
1
0,3,4,-1,0,20,40,60,80,100,120,3
2
1,4,5,-1,O3-type LiCrO2,O3-type NaCrO2,Reversible Na Insertion
due to Cr(III)/Cr(IV) redox in solid
Na / NaClO4 PC / NaCrO2
2.0 – 3.6 V vs. Na at 25 mA g-1
1, 10, 20th cycle,10, 5, 2,,1,20, 10, 1,Li and Na systems are not identical.,No Capacity,due to
disproportionation of Cr(IV)
Li / LiClO4 PC / LiCrO2
20 mA g-1
1, 2, 5, 10th cycle,Despite of the same crystal structure, layered Cr oxides
with Li and Na are inactive and active, respectively.
Our group, Electrochem. Commun., 12, 355-358 (2010).,,,,,,,23,How safe is Na-ion?,Li0.5CoO2
Li0FePO4
No exothermic behavior
for Na0.5CrO2,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,E / V,E / V,0,50,100,150,4
3
2
1,0,50,100,150,4
3
2
1,24,O3-NaNi1/2Mn1/2O2 and O3-NaFeO2,Synthesis and electrochemical Na extraction of their solid solution,
NaFex(Ni1/2Mn1/2)1-xO2,O3-NaFeO2
Fe3/4+ redox at 3.3 V,
100 mAh/g but severe fade,Q / mAhg-1
Okada et al., 210th ECS Meeting (2006).
Our group, Electrochemistry (2012).,O3-NaNi1/2Mn1/2O2
140 mAh/g at 3.0 V
with good capacity retention,Q / mAhg-1
Our group,
ECS Trans. (2009), and Inorg. Chem. (2012), etc.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,Voltage/ V,0,50,100,150,5
4
3
2
1
0,O3-type NaFe0.4(Ni1/2Mn1/2)0.6O2
10th←1st
10th←1st
140 mAh/g & good retention
1 M NaClO4 in PC:FEC (98:2),Capacity/ mAhg-1
Our group, J. Electrochem. Soc., 160 (5), A3131 (2013).,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,a,b,A
B
C
A
B
C
A
B,MeO2
layer
Li or NaOct.
c,Octahederal
site
Prismatic
site,26,O3-type
LiCoO2, Li[Li1/3Mn2/3]O2, NaCoO2, NaFeO2 …,0.76 Å,1.02 Å,<<,<<,0.55 Å,Co3+,Li+,Na+,Li-/Na-ion crystallography: Concern on “Ion Size”,P2-type
LixCoO2,LixMnO2,, NaxCoO2, NaxMnO2
x = 2/3,,,,,,,,,,,Voltage/ V,27,P2-Na2/3[Fe1/2Mn1/2]O2,Structure of
Nax[Fe1/2Mn1/2]O2,0,50,100,150,200,0,5
4
3
2
1,Capacity / mAhg-1,FeIV1/2MnIV1/2O2 + Na+ + e-,From XAFS and Mössbauer
NaFeIII1/2MnIII1/2O2,From XRD,
phase transition reversibly occurs between P2 and OP4 stacking.
N. Yabuuchi, S. Komaba et al., Nature Materials (2012).,,,,E vs. Li / V,Evs. Na / V,0,50,100,150,200,0,1,5
4
3
2,Na2FePO4F,Negative electrode
hard-carbon,0.3,O3-NaCoO2,Potential candidates for P.E.
P2-Na2/3Ni1/3Mn1/2Ti1/6O2
O3-NaFe0.4Ni0.3Mn0.3O2
O3-NaFe1/2Co1/2O2
P2-NaxFe1/2Mn1/2O2,-1
Energy density of Na-ion cell ?,,,,,Voltage/ V,29,x = 1/6
Vave. = 3.70 V
470 Wh kg-1,x = 1/3
Vave. = 3.62 V
437 Wh kg-1,0,30,150,180,2,4
3,2
5,5
4
3,2,5
4
3,60 90 120
Capacity/ mAhg-1,Na/Na2/3Ni1/3Mn1/2Ti1/6O2 (x = 1/6) cell demonstrates high energy density,1,3,10,10 3,1,10 3 1,Good cyclability,P2-type Na2/3[Ni1/3(Mn2/3-xTix)]O2
x =0
Vave. = 3.67 V
556 Wh kg-1,with excellent capacity retention.
Our group and BASF, Chem. Comm., in press (2014),Ave. E / V(vs. Na+/Na),50,100,150,200,250,2,3,4,30,200,250,300,350,P2-Na2/3[Ni1/3Mn1/2Ti1/6]O2
(TUS-BASF),+1/3 Na,O3-NaNi1/2Mn1/2O2,P2-Na5/6Li1/6Mn5/6O2,Na2FePO4F,O3-NaCrO2,vs. Hard Carbon as negative
(300 mAh g-1, Eave. = 0.3 V vs. Na),TUS (2011),P2-Na0.85Li0.17Ni0.21Mn0.64O2
(Johnson, ANL)
O3-NaFeO2
(Okada 2006, TUS 2012),Estimating Energy of Na-ion cells
Energy Density / Wh (kg-1 of positive & negative),O3-NaFe0.4Ni0.3Mn0.3O2 (TUS-Sumitomo)
O3-NaFe0.5Co0.5O2
O3-NaNi1/3Co1/3Fe1/3O2 (Ceder, MIT)
P2-Na2/3Fe1/2Mn1/2O2,Graphite/LiMn2O4,Q / mAh(g-1 of positive)
Our group and BASF, Chem. Comm., in press (2014),,,,,31,“Na-ion full-cell,” free from Na metal,,,,,,,,,,,,,,,,,,,,,,,,,,,32,Industrial use,Stationary,v. What is the long term benefit of solving the problem?
Picture from Nikkei BP journal,High power battery
for HEV application,Large-format and low-cost batteries for EES
Rechargeable Na-ion Batteries for Sustainable Energy Society,After 1991
Li-ion battery
on the market,Present
Li-ion
for EV and HEV,Near future
Broad
application,automated vehicle,wind power station,battery-equipped
house,solar power plant,port crane,hybrid train,electric bus
Transportation,forklift,Higher energy
and power,Low cost,,,,,,,Summary,Crystallography
Intercalation
Ionic Diffusion
Passivation
Solvation
Kinetics
Thermodynamics
Better battery performance
(including new science and new technology),Li-ion chemistry,Na-ion chemistry,,34,NISSAN, Mitsubishi Chem., Sumitomo Chem.
BASF, GS Yuasa, etc.
This study was in part supported by the NEXT Program
of JSPS, and ESICB, MEXT, and industrial partners.,Coworkers and industrial partners,Reactivity:,Li << Na << K << Rb …,Cell voltage:
Melting point:,Li > Na …
Li 179˚C, Na 98˚C,Make sure to handle sodium metal safely.,35,Message for students,
Na metal is really dangerous than Li metal.,
展开阅读全文
相关搜索