1、分子影像学进展一、分子影像学研究内容分子影像学(molecular imaging)是运用影像学手段显示组织水平、细胞和亚细胞水平的特定分子,反映活体状态下分子水平变化,对其生物学行为在影像方面进行定性和定量研究的科学。分子影像学以分子生物学为基础,借助现代医学影像技术,对人体内部生理或病理过程在分子水平上的无创、微创实时成像,为疾病的早期发现和治疗提供手段, 并有望为临床诊断和治疗带来新突破。分子影像学作为一门新兴学科,代表了医学影像学的发展方向,必将对现代和未来医学模式产生重要的影响。近 10 余年, 分子影像学快速发展,取得一系列成就:在细胞水平检测病变内的炎性细胞浸润及细胞移植治疗中移
2、植干细胞在活体内的迁移、分化情况;在分子水平通过标记与靶组织特异性识别并能与之结合的分子,动态观察疾病的发生、发展 过程,同时检测多个生物事件, 并对其进行时间和空间上的研究。在基因水平应用报告基因成像可间接反映目的基因的表达情况,成功实现了对基因治疗过程的活体监测。分子影像学常用的成像技术包括:1 、核医学成像。灵敏度高, 是目前最为成熟的分子显像技术。2、 MR 成像。分子水平的 MR 成像建立在传统成像技术基础上, 以特殊分子作为成像对象。其根本宗旨是将非特异性物理成像转为特异性分子成像。3、光学成像。包括弥散光学成像、多光子成像、活体显微镜成像、近红外线荧光成像及表面共聚焦成像等。4、
3、超声成像。主要是利用微泡对比剂介导来发现疾病早期的细胞和分子水平的变化。二、主要授课内容:第一章、分子影像学概述 4 学时1、概念、范围、成像原理、基本成像技 术;2、分子影像学的分子生物学基础。第二章、核分子影像学 8 学时1、核物理基础; 2、相关仪器设备;3、放射性核素标记化合物和药物;4、核分子影像学应用进展(受体显像、基因显像、放射免疫显像)。第三章、光学分子成像 8 学时1、概述;2、成像原理、特点;3、成像设备;4. 光学分子成像研究进展(荧光成像技术、生物发光显像技术)。第四章、磁共振分子成像 8 学时1、概述;2、成像原理、特点;3、成像设备;4、磁共振分子成像研究进展(神经
4、系统磁共振成像、心血管磁共振成像)。第五章 、超声分子成像 4 学时1、概述;2、成像原理、特点;3、成像设备;4、超声分子成像研究进展。三、本课程的特色是1、使用原版英语教材(Weissleder R, Ross BD, Rehemtulla A, Gambhir SS. Molecular Imaging: 2010 )及申宝忠主编的“分子影像学”第二版,2010,人民卫生出版社出版。2、具有美国 Stanford 大学的分子影像学教学的参考课件3、师资充足,教师英语授课经验丰富。多数授课教师具有海外经历和医学英语班,留学生班授课的经历。 4、多学科交叉、基础与临床结合。在授 课教师中有从
5、事基础研究的包括分子生物学、免疫学、放射化学和实验核医学的,也有从事临床研究的,包括临床核医学,放射医学等。Introduction about the Course of “Advancing of Molecular Imaging”The Main Contents of CourseMolecular Imaging is to reflect the specific molecular at the level of issues, cellular and subcellular using of imaging technique, to display change of s
6、pecific molecules in vivo to monitor their biological behavior in imaging features qualitatively and quantitatively. Molecular imaging display the molecular level (cell/molecular structure and function) changes during physiological or pathological processes by noninvasive and invasive imaging, which
7、 may be very useful for early disease detection and treatment.As an advancing science, Molecular Imaging represents the development direction of modern medical imaging, which is deeply influenced for the modern and future medical model. During the past 10 years, the rapid development of molecular im
8、aging made a series of great achievements. For example: at the cellular level, to detect infiltration cell within inflammatory lesions and transplanted stem cells in vivo migration and differentiation in cell transplantation therapy; at the molecular level, through target tissue marker specific reco
9、gnition and binding, to observe the disease occurrence and development dynamically, to simultaneously detect the multiple biological events; at the genetic level, application of reporter gene imaging, to indirectly reflect the expression of target genes, to successfully monitor the process of gene t
10、herapy in vivo.The commonly used techniques in molecular imaging include: 1. Nuclear Medicine Molecular Imaging, which is currently the most sophisticated molecular imaging techniques. 2. MR Molecular Imaging, based on traditional imaging technology with the special molecular imaging, to transform n
11、onspecific physical imaging to specific molecular imaging; 3. Optical Molecular Imaging, including multiphoton imaging, intravital microscopy imaging, near infrared fluorescence imaging and surface confocal imaging; 4.Ultrasound Molecular Imaging, to find the disease early at cellular and molecular
12、levels mainly using microbubble contrast agent.The Features of Course1. Using the original English textbooks (Weissleder R, Ross BD, Rehemtulla A, Gambhir SS. Molecular Imaging: 2010) and Shen Baozhong edited “molecular imaging”, Second Edition, 2010, in Chinese Reference book.2. With American Stanf
13、ord University molecular imaging teaching outline.3. All teachers with enough English teaching experience. The majority of teachers with overseas experience and medical English class teaching experience.4. Combination.among the interdisciplinary, basic and clinical medicine. The teachers are not onl
14、y engaged in basic research including molecular biology, immunology, radiochemistry and nuclear medicine, but also engaged in clinical research, including clinical nuclear medicine and radiation medicineThe Contents of Teaching Chapter I Introduction of molecular imaging 4 hours1. Concept, scope, pr
15、inciple of image formation and basic technique2. Molecular Biology for ImagingChapter II Molecular Imaging of Nuclear Medicine 8 hours1. Basis of nuclear physics 2. Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT) Micro PET3. Radiopharmaceutical4. Advancing n
16、uclear molecular imaging -receptor imaging-gene imaging-radioimmunoimagingChaper III Optics Molecular imaging 8 hours1. General introduction2. Principle of image formation 3. Basic technique4. Advancing Optics Molecular Imaging- Fluorescence Imaging Methods-Bioluminescence Imaging MethodsChapter IV
17、MR for Molecular Imaging 8 hours1. General introduction2. Principle of image formation 3. Basic technique4. Advancing MR for molecular imaging-Neuroimaging by MR-MR for Cardiac ImagingChapter V Ultrasound for Molecular Imaging 4 hours1. General introduction2. Principle of image formation 3. Basic technique4. Advancing Ultrasound for Molecular Imaging