1、第二单元 匀变速直线运动规律的应用第3课时 自由落体运动,必修1 第一章运动的描述探究匀变速直线运动规律,基础回顾,考点一,自由落体运动,1自由落体运动的定义物体只在_作用下从_开始下落的运动,叫做自由落体运动2自由落体运动的特点(1)v0_.(2)加速度符号为g.在地球表面取g_ m/s2,在粗略计算中经常取g_m/s2.,答案: 1重力静止 2(1)0(2)9.810,(3)重力加速度的方向_(4)它是一种_直线运动3自由落体运动的公式: _;s _;_.,4重力加速度的变化(1)随地球纬度的增大,重力加速度略微_;在地球两极重力加速度最_(2)随着物体离地面的高度的增大,重力加速度会_5
2、伽利略对自由落体运动的研究方法,是从_.,答案:(3)竖直向下(4)匀加速 3gt 2gs,答案:4(1)增大大(2)减小 5提出假设数学推理实验观察 合理推理修正推广,要点深化,1自由落体运动要满足的条件自由落体运动实际上是物理学中的理想化运动,只有满足一定的条件下才能把实际的落体运动看成是自由落体运动第一,物体只受重力作用,如果还受到空气阻力作用,那么空气阻力与重力相比可以忽略不计;第二,物体必须从静止开始下落,即初速度为零必须是从静止开始算起的自由下落过程才是自由落体运动,从中间取一段运动过程不是自由落体运动2自由落体运动中处理问题的重要特点(1)初速度为零的匀加速直线运动的导出规律都适
3、用;(2)连续相等的时间内位移的增加量相等,即sgt2;(3)一段时间内的平均速度,3什么是科学的探究过程科学探究过程一般是从现象的观察中说出问题,然后对问题的原因做出假设,运用逻辑得出推论,看能否解释新的实验事实,再对假说进行修正和推广,或重新建立新的理论,基础回顾,考点二,竖直上抛运动,竖直上抛运动的定义及特点不计空气阻力,以一定的_竖直向上抛出的物体的运动叫做竖直上抛运动其加速度也为g.竖直上抛运动在上升阶段是_运动;在下降阶段是_运动,答案:初速度匀减速自由落体,要点深化,1两种常见的处理方法(1)分段法:将上升阶段看作初速度为v0、末速度为0、加速度为g的匀减速直线运动,下落阶段为自
4、由落体运动(2)一体化法:将上升阶段和下落阶段统一看成是初速度向上、加速度向下的匀减速直线运动v00,a0.公式:vtv0gt;sv0t gt2; 2gs.2两个推论(1)上升的最大高度hm. ;(2)上升最大高度所需的时间tm.,3两个性质(1)由于下落过程是上升过程的逆过程,所以物体在通过同一位置时,上升速度和下落速度大小相等(2)物体在通过同一段高度的过程中上升时间和下落时间相等,题型一,自由落体运动中局部与整体的处理,解决自由落体运动问题时,对整体与局部,局部与局部过程相互关系的分析,是解题的重要环节,从某电视塔塔顶附近的平台上释放一个小球,不计空气阻力和风的作用,小球自由下落若小球在
5、落地前的最后2秒的位移是80 m,则该平台到地面的高度是多少?(g10 m/s2),点拨:根据题意画出运动草图如右图所示,初位置记为A位置,(t2)秒时记为B位置,落地点为C位置不难看出既可以把BC段看成整体过程AC与局部过程AB的差值,也可以把BC段看做是物体以初速度vB和加速度g向下做2 s的匀加速运动,而vB可看成是局部过程AB的末速度但把下部转到上部处理可省求通过B点的速度,仅用位移公式即可,保持思路连贯性,不易失误,解析:设物体从平台A落到地面所经历时间为t,通过的位移为H;物体在(t2)秒内的位移为h.因为v00,所以有H gt2h g(t2)2由题意:Hh80 m由解得:t5 s
6、,H125 m答案:125 m,题型训练,1上列中,请同学们从上而下先列式确定物体通过B点的速度,再对最后2 s根据位移公式列式,解方程组求出结果,解析:由vat,得:vBg(t2) 由xv0t at2,得:hBCvBtBC 两式解得:t5 s,H125 m.,题型二,自由落体运动规律的灵活应用,对于初速为零的匀加速直线运动的规律和有关推论,同样适用于自由落体运动,屋檐每隔一定时间滴下一滴水,当第5滴正欲滴下时,第1滴刚好落到地面,而第3滴与第2滴分别位于高1 m的窗子的上、下沿,如右图所示,问:(1)此屋檐离地面多高?(2)滴水的时间间隔是多少?,解析:如右图所示,如果将这5滴水的运动等效为
7、一滴水的自由落体,并且将这一滴水运动的全过程分成时间相等的4段,设时间间隔为T,则这一滴水在0时刻,1T s末、2T s末、3T s末、4T s末所处的位置,分别对应图示第5滴水、第4滴水、第3滴水、第2滴水、第1滴水所处的位置,据此可作出解答,方法一利用基本规律求解设屋檐离地面高为s,滴水间隔为T.由位移公式s gt2得:第2滴水的位移s2 g(3T)2第3滴水的位移s3 g(2T)2又:s2s31 m联立三式,解得:T0.2 s所以s g(4T)23.2 m.,方法二利用比例法求解,(1)由于初速为零的匀加速直线运动从开始运动起,在连续相等的时间间隔内的位移比为1357,据此令相邻两水滴之
8、间的间距从上到下依次是S3 S5 S7 S,如右图所示显然,窗高为5 S,即5 S1 m,得:S0.2 m.屋檐总高:sS3 S5 S7 S16 S3.2 m.(2)根据s gt2,得:t0.8 s.滴水时间间隔:T 0.2 s.答案:(1)3.2 m(2)0.2 s互动探究:本例题还有其他的解法吗?请你开展讨论探究,题型训练,2如图所示,小球从竖直砖墙某位置静止释放,用频闪照相机在同一底片上多次曝光,得到了图中1、2、3、4、5所示小球运动过程中每次曝光的位置连续两次曝光的时间间隔均为T,每块砖的厚度为d.根据图中的信息,下列判断错误的是()A位置“1”是小球释放的初始位置B小球做匀加速直线
9、运动C小球做自由落体运动D小球下落的加速度为,解析:由于小球下落的间隔不符合1357,但间隔之差相等,都为d,故小球做初速不为零的匀加速直线运动(不能肯定是自由落体运动),根据daT2,得下落的加速度a.,答案:AC,题型三,探究跳水等体育运动的物理问题,我们在观看北京奥运会10米双人跳台比赛中,常常看到因两人起跳存在时间差而使动作不能同步,双方距离越来越大(如下图所示),这样得分也自然不高假设两人起跳的时间差为0.1 s,离开跳台后都立即做自由落体运动,试计算第一个人在双手入水瞬间双方存在的高度差(g取10 m/s2,双方的身高一样,人的重心位于手到脚的长度的中点,结果保留二位有效数字),解
10、析:设先起跳者从跳起到双手入水的时间为t1,由题意知其位移为h110 m根据自由落体运动的规律:h1,由此知道后起跳者对应的空中时间:t2t10.11.3 s(或1.31 s)后起跳的位移:h2 101.32 m8.5 m(或8.6 m)在第一个人双手入水瞬间双方存在的高度差:hh1h21.5 m(或1.4 m)答案:1.5 m(或1.4 m),题型训练,3.2008年在北京奥运会中,中国小将何雯娜以37.80分为中国蹦床队夺得金牌如图所示,从何雯娜离开蹦床瞬间开始可看作竖直上抛运动(不计空气阻力)A到达最高点时速度为零,加速度也为零B到达最高点时速度为零,加速度不为零C上升过程与下落过程平均
11、速度相同D当它回到蹦床时的速度与刚跳起时的速度相同,解析:何雯娜到达最高点时速度为零,但仅受重力作用,故加速度不为零,B正确;由于速度是矢量,虽然上升过程与下落过程平均速度大小相同及当她回到蹦床时的速度与刚跳起时的速度大小相同,但方向相反,故CD都是错误的答案:B,警示,对惯性理解不深刻,导致看不到题中的隐含条件,气球以10 m/s的速度匀速竖直上升,从气球上掉下一个物体,经17 s到达地面求物体刚脱离气球时气球的高度(g10 m/s2)错解:物体从气球上掉下来到达地面这段距离即为物体脱离气球时,气球的高度因为物体离开气球做自由落体运动,根据h gt2,代入数字解得:h1445 m所以物体刚脱离气球时,气球的高度为1445 m.,分析纠错:由于对惯性理解不深刻,导致对题中的隐含条件即物体离开气球时具有向上的初速度的忽视误认为v00.实际物体随气球匀速上升时,物体具有向上10 m/s的速度当物体离开气球时,由于惯性,物体继续向上运动一段距离,在重力作用下做匀变速直线运动本题既可以用整体处理的方法也可以分段处理下面介绍整体处理的方法,其他方法自己探究,可将物体的运动过程视为匀减速直线运动根据题意画出运动草图如图所示规定向下方向为正,则v010 m/s,g10 m/s2,t17 s.根据hv0t gt2代入数字解得:物体刚掉下时离地1275 m.答案:1275 m,祝,您,学业有成,