1、课题:柱、锥体的结构特征教学目标:通过实物模型,观察大量的空间图形,认识柱体、锥体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.教学重点:让学生感受大量空间实物及模型,概括出柱体、锥体的结构特征.教学难点:柱、锥的结构特征的概括.教学过程:一、新课导入:在现实生活中,我们的周围存在着各种各样的物体,它们具有不同的几何形状。由这些物体抽象出来的空间图形叫做空间几何体。下面请同学们观察课本 P2 图 1.1-1 的物体,它们具有什么样的几何结构特征?你能对它们进行分类吗?分类的依据是什么?学生观察思考,最后归类总结。上图中的物体大体可分为两大类:(一)由若干个平面多变形围成的几何体叫做
2、多面体。围成多面体的各个多边形叫做多面体的面。相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。(二)由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体,叫做旋转体,这条定直线叫做旋转体的轴。这节课我们主要学习多面体柱、锥的结构特征。二、讲授新课:1. 棱柱的结构特征:请同学们根据刚才的分类,再对比一下图 1.1-1 中(2)(5)(7)(9)中的几何体,并寻找它们的共同特征。 (师生共同讨论,总结出棱柱的定义及其相关概念)(1)定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。(2)棱柱的有关概念
3、:(出示右图模型,边对照模型边介绍)棱柱中,两个互相平行的面叫做棱柱的底面(简称底) ,其余各面叫做棱柱的侧面,相邻侧面的公共边叫做棱柱的侧棱,侧面与底面的公共顶点叫做棱柱的顶点。(3)棱柱的分类:按底面的多边形的边数分,有三棱柱、四棱柱、五棱柱等。(4)棱柱的表示用底面各顶点的字母表示,如右图的六棱柱可表示为“棱柱 ”FEDCBAF思考 1:有两个面平行,其余各面都是平行四边形的几何体是不是棱柱?答:不是棱柱。据反例。如右图几何体有两个面平行,其余各面都是平行四边形,但它不是棱柱。2棱锥的结构特征:请同学们根据刚才的分类,再对比一下图 1.1-1 中(14)(15)中的物体,并寻找它们的共同
4、特征。(1)定义:有一个面是多边形,其余各面都是有一公共点的三角形,由这些面所围成的几何体叫做棱锥。(2)棱锥的有关概念:棱锥中,这个多边形面叫做棱锥的底面或底,有公共顶点的各个三角形面叫做棱锥的侧面,各侧面的公共顶点叫做棱锥的顶点,相邻侧面的公共边叫做棱锥的侧棱。(3)棱锥的分类:按底面的多边形的边数分,有三棱锥、四棱锥、五棱锥等。(4)棱锥的表示:用底面各顶点的字母表示,如右图的四棱锥可表示为“棱锥 ”ABCDS讨论:棱柱、棱锥分别具有一些什么几何性质?有什么共同的性质?棱柱:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形棱
5、锥:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.3圆柱、圆锥的结构特征:(1)观察图 1.1-1 中的(1) ( 3) (6) (8)的物体,并思考:圆柱、圆锥如何形成?(2) 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫圆柱;以直角三角形的一条直角边为旋转轴,其余两边旋转所成的曲面所围成的几何体叫圆锥.(3)圆柱、圆锥的有关概念:( 参照课本图 1.1-7 和 1.1-8 的模型,边对照模型边介绍) 在圆柱中,旋转的轴叫做圆柱的轴,垂直于轴的边旋转而成的圆面叫做圆柱的底面,平行于轴的边旋转而成的曲面叫做圆柱的侧
6、面,无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。圆锥中的轴、底面、侧面、母线,请学生自己仿照圆柱的定义归纳总结。(4)圆柱、圆锥的表示方法:圆柱、圆锥都用表示它的轴的字母表示,例如图 1.1-7 中的圆柱表示为圆柱 OO,图 1.1-8 中的圆锥表示为圆锥 SO.(5)讨论:棱柱与圆柱、棱柱与棱锥的共同特征? 圆柱和棱柱统称为柱体;棱锥和圆锥统称为锥体.三、巩固练习:1. 练习:教材 P7 1、2 题. 2. 已知圆锥的轴截面等腰三角形的腰长为 5cm,面积为 12cm,求圆锥的底面半径.3.已知圆柱的底面半径为 3cm,轴截面面积为 24cm,求圆柱的母线长.四、归纳小结:棱柱、
7、棱锥及圆柱、圆锥的结构特征。五、作业布置:教材 P8 习题 1.1,第 1 题课后记:课题:台、球体及简单几何体的结构特征教学目标:通过实物模型,观察大量的空间图形,认识台体、球体及简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.教学重点:让学生感受大量空间实物及模型,概括出台体、球体及简单几何体的结构特征。教学难点:台、球体及简单几何体的结构特征的概括.教学过程:一、复习准备:1. 结合棱柱、棱锥、圆柱、圆锥的几何图形,说出:定义、分类、表示。2. 结合棱柱、棱锥、圆柱、圆锥的几何图形,说出各几何体的一些几何性质?二、讲授新课:1. 棱台与圆台的结构特征:(1)思考:用一
8、个平行于底面的平面去截柱体和锥体,所得几何体有何特征?(2)定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分叫做棱台;用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分叫做圆台.列举生活中的实例,并找出图 1.1-1 中哪些物体是棱台和圆台?(3)结合课本图 1.1-6 认识:棱台的 上、下底面、侧面、侧棱、顶点。结合课本图认识:圆台的上、下底面、侧面、母线、轴。(4)棱台的分类及表示:由三棱锥、四棱锥、五棱锥等截得的棱台分别叫做三棱台、四棱台、五棱台等;棱台用表示底面各顶点的字母表示,例如图 1.1-6 中的棱台表示为棱台 ABCD-ABCD. (5) 圆台的表示: 圆台
9、用表示它的轴的字母表示,例如图 1.1-9 的圆台表示为圆台 OO.(6)讨论:棱台、圆台分别具有一些什么几何性质?棱台:两底面所在平面互相平行;两底面是对应边互相平行的相似多边形;侧面是梯形;侧棱的延长线相交于一点.圆台:两底面是两个半径不同的圆;轴截面是等腰梯形;任意两条母线的延长线交于一点;母线长都相等.棱台与圆台统称为台体。2球体的结构特征:(1) 定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体,叫球体,简称球.列举生活中的实例,并找出图 1.1-1 中哪些物体是球体?(2)结合课本图 1.1-10 认识:球心、半径、直径 .在球中,半圆的圆心叫做球的球心,半圆的半径叫
10、做球的半径,半圆的直径叫做球的直径。(3) 球的表示:球常用表示球心的字母表示,例如图 1.1-10 中的球表示为球 O。(4) 讨论:球与圆柱、圆锥、圆台有何关系?(旋转体)棱台与棱柱、棱锥有什么共性?(多面体)3. 简单组合体的结构特征:(1)讨论:现实世界中物体表示的几何体,除了柱体、锥体、台体、球体等简单几何体外,还有哪些物体存在?例如矿泉水塑料瓶由哪些几何体构成?灯管呢?(2) 定义:由简单几何体(如柱、锥、台、球等)组合而成的几何体叫简单组合体.列举生活中的实例。(3)简单组合体的构成形式:一种是由简单几何体拼接而成,例如课本图 1.1-11 中(1) (2)物体表示的几何体;一种
11、是由简单几何体截去或挖去一部分而成,例如课本图 1.1-11 中(3) (4)物体表示的几何体。三、巩固练习:1. 练习:课本 P8 A 组 25 题.2. 已知长方体的长、宽、高之比为 4312,对角线长为 26cm, 则长、宽、高分别为多少?3. 棱台的上、下底面积分别是 25 和 81,高为 4,求截得这棱台的原棱锥的高4. 若棱长均相等的三棱锥叫正四面体,求棱长为 a 的正四面体的高.四、归纳小结:本节课学习了台、球体及简单几何体的定义、表示;并探究了它们的性质及分类,重点要把握它们的结构特征。五、作业布置:习题 1.1 B 组 第 1- 2 题课后记:课题:中心投影与平行投影及简单几
12、何体的三视图教学目标:1、了解中心投影和平行投影的原理;2、能利用正投影绘制空间图形的三视图,并根据所给的三视图识别该几何体。教学重点:投影的概念及三视图的画法。教学难点:识别三视图所表示的空间几何体.教学过程:一、新课导入:1. 讨论:能否熟练画出上节所学习的几何体?工程师如何制作工程设计图纸?2. 引入:从不同角度看庐山,有古诗:“横看成岭侧成峰,远近高低各不同。不识庐山真面目,只缘身在此山中。 ” 对于我们所学几何体,常用三视图和直观图来画在纸上.三视图:观察者从不同位置观察同一个几何体,画出的空间几何体的图形;直观图:观察者站在某一点观察几何体,画出的空间几何体的图形.用途:工程建设、
13、机械制造、日常生活.二、讲授新课:1. 中心投影与平行投影:我们知道,物体在灯光或日光的照射下,就会在地面或墙壁上产生影子,这是一种自然现象。投影就是由这类自然现象抽象出来的。所谓投影,是光线(投射线)通过物体,向选定的面(投影面)投射,并在该面上得到图形的方法。生活中许多利用投影的例子,如手影表演,皮影戏等。我们把光由一点向外散射形成的投影称为中心投影。中心投影的优缺点:它能非常逼真的反映原来的物体,主要应用于绘画领域,也常用来概括的描绘一个结构或一个产品的外貌。由于投影中心,投影面和物体的相对位置改变时,直观图的大小和形状亦将改变,因此在另外的一些领域,比如工程制图或技术图样,一般不采用中
14、心投影。我们把在一束平行光线照射下形成的投影,称为平行投影。平行投影按照投射方向是否正对着投影面,可以分为斜投影和正投影两种。 (如图)我们所讲的视图就是将物体按正投影向投影面投射所得到的图形。三视图就是从三个不同的视角看空间物体的结构,只有这样才能客观的反映物体。所以我们在现实生活中,也要从多个角度看待问题,否则就如瞎子摸象。2. 柱、锥、台、球的三视图:(1)三视图的定义:正视图:光线从几何体的前面向后面正投影得到的投影图;侧视图:光线从几何体的左面向右面正投影得到的投影图;俯视图:光线从几何体的上面向下面正投影得到的投影图。几何体的正视图、侧视图和俯视图统称为几何体的三视图。(2)讨论:
15、三视图与平面图形的关系? 画出长方体的三视图(教师在讲台上给出模型,并在黑板上画出三视图)注意:一般地,侧视图在正视图的右边,俯视图在正视图的下边。讨论:三视图中反应的长、宽、高的特点?“长对正” , “高平齐” , “宽相等”(3) 结合球、圆柱、圆锥的模型,从正面(自前而后) 、侧面(自左而右) 、上面(自上而下)三个角度,分别观察,画出观察得出的各种结果. 即正视图、侧视图、俯视图:(4)试画出:棱柱、棱锥、棱台、圆台的三视图. (学生自己动手画图)(5)讨论:三视图,分别反应物体的哪些关系(上下、左右、前后)?哪些数量(长、宽、高)?正视图反映了物体上下、左右的位置关系,即反映了物体的
16、高度和长度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。(6) 讨论:根据以上的三视图,如何逆向得到几何体的形状.(试变化以上的三视图,说出相应几何体的摆放)三、巩固练习:(1) 画出正四棱锥的三视图.(2)画出右图所示几何体的三视图.右图是一个物体的正视图、左视图和俯视图,试描述该物体的形状. 四、归纳小结:今天我们学习了中心投影和平行投影,三视图的画法以及由三视图说实物。三视图画法里面要注意“长对正” , “高平齐” , “宽相等” 。五、作业布置:1、画出右图三棱柱的三视图。2已知某物体的三视图如图所示,
17、那么这个物体的形状是_. 正视图 侧视图 俯视图课后记:课题:简单组合体的三视图教学目标:能利用正投影绘制简单组合体的三视图,并根据所给的三视图说出该几何体由哪些简单几何体构成。教学重点:简单组合体三视图的画法。教学难点:识别三视图所表示的空间几何体.教学过程:一、复习回顾:1中心投影与平行投影的概念:中心投影:光由一点向外散射形成的投影。平行投影:在一束平行光线照射下形成的投影。2三视图的概念:正视图:光线从几何体的前面向后面正投影得到的投影图;侧视图:光线从几何体的左面向右面正投影得到的投影图;俯视图:光线从几何体的上面向下面正投影得到的投影图。几何体的正视图、侧视图和俯视图统称为几何体的
18、三视图。在三视图中要注意:(1)要遵守“长对正” , “高平齐” , “宽相等”的规律;(2)要注意三视图的主视图反映上下、左右关系,俯视图反映前后、左右关系,左视图反映前后、上下关系,方位不能错。二、讲授新课:1简单组合体的三视图:例 1:画出下列几何体的三视图。分析:画三视图之前,先把几何体的结构弄清楚。例 2:如图:设所给的方向为物体的正前方,试画出它的三视图(单位:cm) 。(与学生一起观察物体,给于必要的阐述)主主主主主主主主主主主主现在,我们已经学会了画物体的三视图,反过来,由三视图,你能说出是什么物体吗?例 3:根据下列三视图,说出立体图形的形状。 (2)(1)(3)解:(1)圆
19、台;(2)正四棱锥;(3)螺帽。例 4:下图是一个物体的三视图,试说出物体的形状。主主主主主主主主主三、巩固练习:课本第 15 页练习 第 14 题。四、归纳小结:今天我们学习了三视图的画法以及由三视图说实物。重点要通过三视图识别所表示的几何体。五、作业布置:课本第 20-21 页 习题 1 2 的第 1、2 题。课后记:课题:空间几何体的直观图教学目标:(1)掌握斜二测画法画水平设置的平面图形的直观图。(2)对比方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。教学重点:用斜二测画法画空间几何体直观图。教学难点:用斜二测画法画空间几何体直观图的画法原理。教学过程:一、
20、新课导入:1. 提问:何为三视图?(正视图:自前而后;侧视图:自左而右;俯视图:自上而下)2. 讨论:如何在平面上画出空间图形?3. 引入:定义直观图(表示空间图形的平面图). 观察者站在某一点观察几何体,画出的图形.把空间图形画在平面内,画得既富有立体感,又能表达出图形各主要部分的位置关系和度量关系的图形二、讲授新课:1. 水平放置的平面图形的斜二测画法:(1)讨论:水平放置的平面图形的直观感觉?以六边形为例讨论.例 1 用斜二测画法画水平放置的正六边形的直观图。 (师生共练,注意取点、变与不变 小结:画法步骤)画法: 如图 1.2-10(1),在正六边形 ABCDEF 中,取 AD 所在直
21、线为 x 轴,对称轴 MN 所在直线为 y 轴,两轴相交于点 O。在图 1.2-10(2)中,画相应的 x轴与 y轴,两轴相交于点 O,使=450。XOY 在图 1.2-10(2)中,以 O为中点,在 x轴上取 AD=AD,在 y轴上取 MN= MN。以点21N为中点,画 BC平行于 x轴,并且等于 BC;再以 M为中点,画 EF平行于 x轴,并且等于EF。连接 AB, CD,DE,FA,并檫去辅助线 x轴和 y轴,便获得正六边形 ABCDEF 水平放置的直观图 ABCDEF(图 1.2-10(3)) 。(2)给出斜二测画法的基本步骤:建立直角坐标系,在已知水平放置的平面图形中取互相垂直的 O
22、X,OY,建立直角坐标系;画出斜坐标系,在画直观图的纸上(平面上)画出对应的 OX,OY,使 =450(或O1350) ,它们确定的平面表示水平平面;画对应图形,在已知图形平行于 X 轴的线段,在直观图中画成平行于 X轴,且长度保持不变;在已知图形平行于 Y 轴的线段,在直观图中画成平行于 Y轴,且长度变为原来的一半;擦去辅助线,图画好后,要擦去 X 轴、Y 轴及为画图添加的辅助线(虚线) 。(3) 练习: 用斜二测画法画水平放置的正五边形.(4) 讨论:水平放置的圆如何画?(正等测画法;椭圆模板)2. 空间图形的斜二测画法:(1) 讨论:如何用斜二测画法画空间图形?例 2 用斜二测画法画长
23、4cm、宽 3cm、高 2cm 的长方体 ABCD-ABCD的直观图.(师生共练,建系取点连线,注意变与不变; 小结:画法步骤)画法: 画轴。如图 1.2-12,画 x 轴、y 轴、z 轴,三轴相交于点 O,使xOy=45 0,xOz=90 0. 画底面。以点 O 为中点,在 x 轴上取线段 MN,使 MN=4cm;在 y 轴上取线段 PQ,使 PQ= cm.分23别过点 M 和 N 作 y 轴的平行线,过点 P 和 Q 作 x 轴的平行线,设它们的交点分别为A,B,C,D,四边形 ABCD 就是长方体的底面 ABCD. 画侧棱。过 A,B,C,D 各点分别作 z 轴的平行线,并在这些平行线上
24、分别取 2cm 长的线段AA,BB,CC,DD. 成图。顺次连接 A,B,C,D,并加以整理(去掉辅助线,将被遮挡的部分改为虚线) ,就得到长方体的直观图。(2)思考:如何根据三视图,用斜二测画法画它的直观图?例 3 如图 12-13,已知几何体的三视图,用斜二测画法画出它的直观图。分析:有几何体的三视图知道,这个几何体是一个简单组合体。它的下部是一个圆柱,上部是一个圆锥,并且圆锥的底面与圆柱的上底面重合。我们可以先画出下部的圆柱,再画出上部的圆锥。画法: 画轴。如图 1.2-14(1),画 x 轴、z 轴,使xOz=90 0。 画圆柱的下底面。在 x 轴上取 A,B 两点,使 AB 的长度等
25、于俯视图中圆的直径,且OA=OB。选择椭圆模板中适当的椭圆过 A,B 两点,使它为圆柱的下底面。 在 Oz 上截取点 O,使 OO等于正视图中 OO的长度,过点 O作平行于轴 Ox 的轴 Ox,类似圆柱下底面的作法作出圆柱的上底面。 画圆锥的顶点。在 Oz 上截取点 P,使 PO等于正视图中相应的高度。 成图。连接 PA,PB,AA,BB,整理得到三视图表示的几何体的直观图(图 1.2-14(2))强调:用斜二测画法画图,注意正确把握图形尺寸大小的关系。(3)讨论:三视图与直观图有何联系与区别?空间几何体的三视图与直观图有密切联系. 三视图从细节上刻画了空间几何体的结构,根据三视图可以得到一个精确的空间几何体,得到广泛应用(零件图纸、建筑图纸). 直观图是对空间几何体的整体刻画,根据直观图的结构想象实物的形象.三、巩固练习:1探究 P19 奖杯的三视图到直观图.2 练习:P19 15 题3. 画出一个正四棱台的直观图.尺寸:上、下底面边长 2cm、4cm; 高 3cm四、归纳小结:让学生回顾斜二测画法的关键与步骤。五、作业布置:课本 P21 第 4、5 题。课后记: