容斥原理之三者容斥问题.doc

上传人:hw****26 文档编号:3794101 上传时间:2019-07-17 格式:DOC 页数:3 大小:96KB
下载 相关 举报
容斥原理之三者容斥问题.doc_第1页
第1页 / 共3页
容斥原理之三者容斥问题.doc_第2页
第2页 / 共3页
容斥原理之三者容斥问题.doc_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述

1、 http:/容斥原理之三者容斥问题浙江行测答题技巧:容斥原理之三者容斥问题中公教育考试研究院宋丽娜:容斥原理是行测数学运算中常考知识点。容斥原理是指在计数时,必须注意无一重复,且无遗漏。这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。例1:一个班级的学生数学和语文每人至少喜欢其中一种,其中喜欢数学课的有49人,喜欢语文课的有52人,二者都喜欢的有21人,则这个班级有多少人?中公点拨:本题就是一个容斥问题,解决此问题的方法就是先算:49+52=101(把含于某

2、内容中的所有对象的数目先计算出来),然后再把计数时重复计算的数目排斥出去即:101-21=80人,则整个班级的人数就有80人。三者容斥问题是行测数学运算中常考也相对较复杂的容斥问题。所谓三者容斥是指在题干中有三种集合(集合就是具有共同属性所以元素的的整体,例如上题中喜欢数学的人构成一个集合)。三者容斥问题有一个基本公式:A,B,C 代表三个集合,则有ABUC=A+B+C-AB-AC-BC+ ABC这个公式表达的含义是,A+B+C 再减去两两相交之后,中间 E(即 ABC)这部分被减没了。而容斥原理的基本思想是计数时不重复不漏掉,故要再加回来,所以又加了一个ABC。例2. 实验小学的小记者对本校

3、100名同学进行调查,调查他们对三种大球(篮球、足球、排球)的与否。结果显示:他们都至少喜欢三种大球中的一种,其中有58人喜欢篮球,有68人喜欢足球,有62人喜欢排球,而且,篮球和足球都喜欢的有45人,足球和排球都喜欢的有33人,三种球都喜欢的有12人。篮球和排球都喜欢的多少人?http:/中公教育解析:由题意可画图如下:则有上述公式可知:58+68+62-45-33-篮球和排球都喜欢+12=100人故喜欢篮球和排球的人有22人。例3. 实验小学的小记者对本校100名同学进行调查,调查他们对三种大球(篮球、足球、排球)的与否。结果显示:其中有58人喜欢篮球,有68人喜欢足球,有62人喜欢排球,

4、而且,篮球和足球都喜欢的有45人,足球和排球都喜欢的有33人,三种球都喜欢的有12人,还有5人三种球都不喜欢,则篮球和排球都喜欢的多少人?中公教育解析:本题和上题相比,较一般的三者容斥更为复杂。因为,题干中所出现的喜欢篮球、喜欢足球、喜欢排球的三种集合都是在全集100人中考查,且题干中出现了同时不属于这三种集合的元素。中公点拨:此类型题的做法大家只要记住构造全集即可,题干中不知道的设为未知数。外框的长方形代表全集,用 I 来表示,D 代表同时不属于集合 A,B,C 三个集合的元素。构造全集 I= A+B+C-AB-AC-BC+ ABC+D由此可得本题:设篮球和排球都喜欢的有 x 人,则有http:/100=58+68+62-45-33-x+12+5解得 x=27。中公教育专家提醒考生:容斥问题的关键在于计数时不能重复,不能漏掉。如三者容斥这种比较复杂的容斥问题可以现根据题意画出其图形(叫文氏图),然后再根据公式及题干所求问题计算。本文来源:金华中公教育

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 实用文档资料库 > 策划方案

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。