无损检测超声波检测二级试题库(UT)带答案.doc

上传人:hw****26 文档编号:3794448 上传时间:2019-07-17 格式:DOC 页数:31 大小:466KB
下载 相关 举报
无损检测超声波检测二级试题库(UT)带答案.doc_第1页
第1页 / 共31页
无损检测超声波检测二级试题库(UT)带答案.doc_第2页
第2页 / 共31页
无损检测超声波检测二级试题库(UT)带答案.doc_第3页
第3页 / 共31页
无损检测超声波检测二级试题库(UT)带答案.doc_第4页
第4页 / 共31页
无损检测超声波检测二级试题库(UT)带答案.doc_第5页
第5页 / 共31页
点击查看更多>>
资源描述

1、无 损 检 测超声波试题(UT)一、是非题1.1 受迫振动的频率等于策动力的频率。 1.2 波只能在弹性介质中产生和传播。 (应该是机械波)1.3 由于机械波是由机械振动产生的,所以波动频率等于振动频率。 1.4 由于机械波是由机械振动产生的,所以波长等于振幅。 1.5 传声介质的弹性模量越大,密度越小,声速就越高。 1.6 材料组织不均匀会影响声速,所以对铸铁材料超声波探伤和测厚必须注意这一问题。1.7 一般固体介质中的声速随温度升高而增大。 1.8 由端角反射率试验结果推断,使用 Kl.5的探头探测单面焊焊缝根部未焊透缺陷,灵敏度较低,可能造成漏检。 1.9 超声波扩散衰减的大小与介质无关

2、。 1.10 超声波的频率越高,传播速度越快。 1.11 介质能传播横波和表面波的必要条件是介质具有切变弹性模量。 1.12 频率相同的纵波,在水中的波长大于在钢中的波长。 1.13 既然水波能在水面传播,那么超声表面波也能沿液体表面传播。 1.14 因为超声波是由机械振动产生的,所以超声波在介质中的传播速度即为质点的振动速度。1.15 如材质相同,细钢棒(直径Zl 的界面时,声压透过率大于 1,说明界面有增强声压的作用。1.35 超声波垂直入射到异质界时,声压往复透射率与声强透射率在数值上相等。1.36 超声波垂直入射时,界面两侧介质声阻抗差愈小,声压往复透射率愈低。1.37 当钢中的气隙(

3、如裂纹)厚度一定时,超声波频率增加,反射波高也随着增加。(声压反射率也随频率增加而增加)1.38 超声波倾斜入射到异质界面时,同种波型的反射角等于折射角。 1.39 超声波倾斜入射到异质界面时,同种波型的折射角总大于入射角。 1.40 超声波以 10 角入射至水钢界面时,反射角等于 10。 1.41 超声波入射至钢水界面时,第一临界角约为 14.5。 (水/钢界面时,a14.5;钢/水界面不存在第一临界角一说,因为横波不在水中传播)1.42 第二介质中折射的横波平行于界面时的纵波入射角为第一临界角。 1.43 如果有机玻璃铝界面的第一临界角大于有机玻璃钢界面第一临界角,则前者的第二临界角也一定

4、大于后者。 (铝的纵波速度钢的纵波速度,铝的横波速度C2 的凸曲面时,其透过波集聚。 1.48 以有机玻璃作声透镜的水浸聚焦探头,有机玻璃水界面为凹曲面。(水浸聚焦探头就是利用平面波入射到 C1C2 的凸曲面上)1.49 介质的声阻抗愈大,引起的超声波的衰减愈严重。 (成反比)1.50 聚焦探头辐射的声波,在材质中的衰减小。(衰减大,因为聚焦探头有涉及发散波)1.51 超声波探伤中所指的衰减仅为材料对声波的吸收作用。1.52 超声平面波不存在材质衰减。(不存在扩散衰减)2.1 超声波频率越高,近场区的长度也就越大。(个人感觉答案有错,没有前提无法对比)2.2 对同一个直探头来说,在钢中的近场长

5、度比在水中的近场长度大。 2.3 聚焦探头的焦距应小于近场长度。 2.4 探头频率越高,声束扩散角越小。 2.5 超声波探伤的实际声场中的声束轴线上不存在声压为零的点。 2.6 声束指向性不仅与频率有关,而且与波型有关。 2.7 超声波的波长越长,声束扩散角就越大,发现小缺陷的能力也就越强。 2.8 因为超声波会扩散衰减,所以检测应尽可能在其近场区进行。 2.9 因为近场区内有多个声压变为零的点,所以探伤时近场区缺陷往往会漏检。 2.10 如超声波频率不变,晶片面积越大,超声波的近场长度越短。 2.11 面积相同,频率相同的圆晶片和方晶片,超声场的近场长度一样长。 2.12 面积相同,频率相同

6、的到晶片和方晶片,其声束指向角亦相同。 2.13 超声场的近场长度愈短,声束指向性愈好。 2.14 声波辐射的超声波的能量主要集中在主声束内。 2.15 声波辐射的超声波,总是在声束中心轴线上的声压为最高。(近场区内轴线上的声压不一定最高)2.16 探伤采用低频是为了改善声束指向性,提高探伤灵敏度。 (应是提高频率)2.17 超声场中不同横截面上的声压分布规律是一致的。 (近场区与远场区各横截面上声压分布不同)2.18 在超声场的未扩散区,可将声源辐射的超声波看成平面波,平均声压不随距离增加而改变。 2.19 斜角探伤横波声场中假想声源的面积大于实际声源面积。 2.20 频率和晶片尺寸相同时,

7、横波声束指向性比纵波好。 2.21 圆晶片斜探头的上指向角小于下指向角。 2.22 如斜探头入射点到晶片的距离不变,入射点到假想声源的距离随入射角的增加而减小。 2.23 200mm 处 4长横孔的回波声压比 100mm 处 2长横孔的回波声压低。 2.24 球孔的回波声压随距离的变化规律与平底孔相同。 2.25 同声程理想大平面与平底孔回波声压的比值随频率的提高而减小。 2.26 轴类工件外圆径向探伤时,曲底面回波声压与同声程理想大平面相同。2.27 对空心圆柱体在内孔探伤时,曲底面回波声压比同声程大平面低。 3.l 超声波探伤中,发射超声波是利用正压电效应,接收超声波是利用逆压电效应。 3

8、.2 增益 l00dB 就是信号强度放大 100 倍。 (调节增益作用是改变接收放大器的放大倍数)3.3 与锆钛酸铅相比,石英作为压电材料性能稳定、机电耦合系数高、压电转换能量损失小等优点。3.4 与普通探头相比,聚焦探头的分辨力较高。 3.5 使用聚焦透镜能提高灵敏度和分辨力,但减小了探测范围。 3.6 点聚焦探头比线聚焦探头灵敏度高。 3.7 双晶探头只能用于纵波检测。 3.8 B 型显示能够展现工件内缺陷的埋藏深度。 3.9 C 型显示能展现工件中缺陷的长度和宽度,但不能展现深度。 3.10 通用 AVG 曲线采用的距离是以近场长度为单位的归一化距离,适用于不同规格的探头。 3.11 在

9、通用 AVG 曲线上,可直接查得缺陷的实际声程和当量尺寸。 3.12 A 型显示探伤仪,利用 DGS 曲线板可直观显示缺陷的当量大小和缺陷深度。 3.13 电磁超声波探头的优点之一是换能效率高,灵敏度高。 3.14 多通道探伤仪是由多个或多对探头同时工作的探伤仪。(应是交替工作)3.15 探伤仪中的发射电路亦称为触发电路。 (同步电路又称触发电路)3.16 探伤仪中的发射电路亦可产生几百伏到上千伏的电脉冲去激励探头晶片振动。 3.17 探伤仪的扫描电路即为控制探头在工件探伤面上扫查的电路。(扫描电路又称时基电路,用来产生锯齿波电压施加到示波管水平偏转板上,产生一条水平扫描时基线)3.18 探伤

10、仪发射电路中的阻尼电阻的阻值愈大,发射强度愈弱。 (改变阻尼是调节发射脉冲的电压幅度和脉冲宽度,阻值越大,发射强度越强,发射声能越多,分辨力越小。 )3.19 调节探伤仪“深度细调”旋钮时,可连续改变扫描线扫描速度。(从而使荧光屏上回波间距大幅度地压缩或扩展)3.20 调节探伤仪“ 抑制” 旋钮时,抑制越大,仪器动态范围越大。 3.21 调节探伤仪“ 延迟” 旋钮时,扫描线上回波信号间的距离也将随之改变。 3.22 不同压电晶体材料中声速不一样,因此不同压电材料的频率常数也不相同。 3.23 不同压电材料的频率常数不一样,因此用不同压电材料制作的探头其标称频率才能相同。 3.24 压电晶片的压

11、电应变常数(d 33)大,则说明该晶片接收性能好。(压电应变常数 d33 大,发射性能好,发射灵敏度高)3.25 压电晶片的压电电压常数(g 33)大,刚说明该晶片接收性能好。(则接收灵敏度就高)3.26 探头中压电晶片背面加吸收块是为了提高机械品质因素 Qm,减少机械能损耗。(加吸收块是为了减小机械品质因素,Qm 小就表示损耗大,脉冲宽度小,分辨率高)3.27 工件表面比较租糙时,为防止探头磨损和保护晶片,宜选用硬保护膜。 3.28 斜探头楔块前部和上部开消声槽的目的是使声波反射回晶片处,减少声能损失。(目的是为了减少杂波)3.29 由于水中只能传插纵波,所以水浸探头只能进行纵波探伤。3.3

12、0 双晶直探头倾角越大,交点离探测面距离愈远复盖区愈大。 3.31 有机玻璃声透镜水浸聚焦探头,透镜曲率半径愈大,焦距愈大。 3.32 利用 IIW 试块上 50mm孔与两侧面的距离,仅能测定直探头盲区的大致范围。 3.33 当斜探头对准 IIW2 试块上 R5 曲面时,荧光屏上的多次反射回波是等距离的。 3.34 中心切槽的半圆试块,其反射特点是多次回波总是等距离出现。 3.35 与 IIW 试块相比 CSK-IA 试块的优点之一是可以测定斜探头分辨力。 3.36 调节探伤仪的“水平”旋钮,将会改变仪器的水平线性。(调节水平旋钮只是使扫描线连扫描线上的回波一起左右移动一段距离,但不改变回波间

13、距,故也不会改变水平线性)3.37 测定仪器的“ 动态范圈 ”时,应将仪器的“抑制”、 “深度补偿”旋钮置于“ 关”的位置。 3.38 盲区与始波宽度是同一概念。(盲区是指从检测面到能够发现缺陷的最小距离,盲区的大小与仪器的阻塞时间和始脉冲宽度有关)3.39 测定组合灵敏度时,可先调节仪器的“抑制”旋钮,使电噪声电平l0%,再进行测试。 3.40 测定“始波宽度 ”对,应将仪器的灵敏度调至最大。 (灵敏度应调到标准“0”点)3.41 为提高分辨力,在满足探伤灵敏度要求情况下,仪器的发射强度应尽量调得低一些。3.42 在数字化智能超声波探伤仪中,脉冲重复频率又称为采样频率。 3.43 双晶探头主

14、要用于近表面缺陷的探测。 3.44 温度对斜探头折射角有影响,当温度升高对,折射角将变大。3.45 日前使用最广泛的测厚仪是共振式测厚仪。 (应是脉冲反射式测厚仪)3.46 在钢中折射角为 60。 的斜探头,用于探测铝时,其折射角将变大。 (斜探头在钢中折射角为横波折射角,铝的横波折射角比钢的小)3.47 “发射脉冲宽度 ”就是指发射脉冲的持续时间。 3.48 软保护膜探头可减少粗糙表面对探伤的影响。 3.49 脉冲反射式和穿透式探伤,使用的探头是同一类型的。(穿透式探伤的探头发射的是连续波)3.50 声束指向角较小且声柬截面较窄的探头称作窄脉冲探头。 4.1 在液浸式检测中,返回探头的声能还

15、不到最初值的 1%。 4.2 垂直探伤时探伤面的粗糙度对反射波高的影响比斜角探伤严重。 4.3 超声脉冲通过材料后,其中心频率将变低。 4.4 串列法探伤适用于检查垂直于探测面的平面缺陷。 4.5 “灵敏度 ”意味着发现小缺陷的能力,因此超声波探伤灵敏度越高越好。 (灵敏度太高杂波多)4.6 所谓“幻影回波 ”,是由于探伤频率过高或材料晶粒粗大引起的。 (原因是重复频率过高)4.7 当量法用来测量大于声束截面的缺陷的尺寸。 (当量法适用于面积小于截面的缺陷尺寸评定)4.8 半波高度法用来测量小于声束截面的缺陷的尺寸。 4.9 串列式双探头法探伤即为穿透法 4.10 厚焊缝采用串列法扫查时,如焊

16、缝余高磨平,则不存在死区。 (上下表面都存在盲区) 4.11 曲面工件探伤时,探伤面曲率半径愈大,耦合效果愈好。 4.12 实际探伤中,为提高扫查速度减少杂波的干扰,应将探伤灵敏度适当降低。(可以采用更换探头方法来鉴别探头杂波)4.13 采用当量法确定的缺陷尺寸一般小于缺陷的实际尺寸。 4.14 只有当工件中缺陷在各个方向的尺寸均大于声束截面时,才能采用测长法确定缺陷长度。(测长法适用于面积大于声束截面或长度大于声束截面直径的缺陷的评定) 4.15 绝对灵敏度法测量缺陷指示长度时,测长灵敏度高,测得的缺陷长度大。 4.16 当工件内存在较大的内应力时,将使超声被的传播速度及方向发生变化。 4.

17、17 超声波倾斜入射至缺陷表面时,缺陷反射波高随入射角的增大而增高。 5.1 钢板探伤时,通常只根据缺陷波情况判定缺陷。 (还可根据底波衰减情况来判定缺陷)5.2 当钢板中缺陷大于声束截面时,由于缺陷多次反射波互相干涉容易出现“叠加效应” 。(超声波脉冲相对于薄层较窄时,薄层两侧的各次反射波、透射波互不干涉,当钢板中缺陷大于声束截面时同理)5.3 厚钢板探伤中,若出现缺陷的多次反射波,说明缺陷的尺寸一定较大。 5.4 较薄钢板采用底波多次法探伤时,如出现“叠加效应” ,说明钢板中缺陷尺寸一定很大。 5.5 复合钢扳探伤时,可从母材一侧探伤,也可从复合材料一侧探伤。 5.6 用板波法探测厚度 5

18、mm 以下薄钢板时,不仅能检出内部缺陷,同时能检出表面缺陷。5.7 钢管水浸聚焦法探伤时,不宜采用线聚焦探头探测较短缺陷。 5.8 采用水浸聚焦探头检验钢管时,声透镜的中心部分厚度应为 k2 的整数倍。 5.9 钢管作手工接触法周向探伤时,应从顺、逆时针两个方向各探伤一次。5.10 钢管水浸探伤时,水中加入适量活性剂是为了调节水的声阻抗,改善透声性。(为了增强水对钢管表面的润湿作用)5.11 钢管水浸探伤时,如钢管中无缺陷,荧光屏上只有始波和界面波。5.12 用斜探头对大口径钢管作接触法周向探伤时,其跨距比同厚度平板大。 6.1 对轴类锻件探伤,一般来说以纵波直探头从径向探测效果最佳。 6.2

19、 使用斜探头对轴类锻件作圆柱面轴向探测时,探头应采用正反两个方向扫查。 6.3 对饼形锻件,采用直探头作径向探测是最佳的探伤方法。 6.4 调节锻件探伤灵敏度的底波法,其含义是锻件扫查过程中依据底波变化情况评定锻件质量等级。(应是根据缺陷回波情况评定质量等级)6.5 锻件探伤中,如缺陷引起底波明显下降或消失时,说明锻件中存在较严重的缺陷。6.6 锻件探伤时,如缺陷被探伤人员判定为白点则应按密集缺陷评定锻件等级。6.7 铸钢件超声波探伤,一般以纵波直探头为主。 7.1 焊缝横波探伤中,裂纹等危害性缺陷的反射波辐一般很高。 7.2 焊缝横波探伤时,如采用直射法,可不考虑结构反射,变型波等干扰同波的

20、影响。7.3 采用双探头串列法扫查焊缝时,位于焊缝深度方向任何部位的缺陷,其反射波均出现在荧光屏上同一位置。 7.4 焊缝探伤所用斜探头,当楔块底面前部磨损较大时,其 K 值将变小。7.5 焊缝横波探伤时常采用液态耦合剂,说明横渡可以通过液态介质薄层。7.6 当焊缝中的缺陷与声束成一定角度时,探测频率较高时,缺陷回波不易被探头接收。7.7 窄脉冲聚焦探头的优点是能量集中,穿透力强,所以适合于奥氏体钢焊缝检测。(聚焦探头的优点是声束细,灵敏度高,信噪比高)7.8 一股不采用从堆焊层一侧探测的方法检测堆焊层缺陷。 7.9 铝焊缝探伤应选用较高频率的横波专用斜探头。 7.10 裂缝探伤中,裂纹的回波

21、比较尖锐,探头转动时,波很快消失。 二、选择题1.1 以下关于谐振动的叙述-哪一条是错误的( A )A、谐振动就是质点在作匀速圆周运动。B、任何复杂振动都可视为多个谐振动的合成C、在谐振动中,质点在位移最大处受力最大,速度为零。D、在谐振动中,质点在平衡位置速度最大,受力为零。1.2 以下关于阻尼振动的叙述,哪一条是错误的( D )A、阻尼使振动物体的能量逐渐减小。B、阻尼使振动物体的振幅逐渐减小。 C、阻尼使振动物体的运动速率逐渐减小。D、阻尼使振动周期逐渐变长1.3 超声波是频率超出入耳听觉的弹性机械波,其频率范围约为:( A )A、高于 2 万赫芝 B、110MHz C、高于 200Hz

22、 D、0.2515MHz1.4 在金属材料的超声波探伤中,使用最多的频率范围是:( C )A、1025MHz B、l10001KHz C、15MHz D 大于 20000MHz1.5 机械波的波速取决于( D )A、机械振动中质点的速度 B、机械振动中质点的振幅 C、机械振动中质点的振动频率 D、弹性介质的特性1.6 在同种固体材料中,纵波声速 CL横渡声速 Cs,表面波声速 Cn 之间的关系是:( C )A、C RCsCL B、CsC LCR C、C LCsCR D、以上都不对1.7 在下列不同类型超声波中,哪种渡的传播速度随频率的不同而改变?( B )A、表面波 B、板波 C、疏密波(纵波

23、) D、剪切波(横波)1.8 超声波入射到异质界面时,可能发生( D )A、反射 B、折射 C、波型转换 D、以上都是1.9 超声波在介质中的传播速度与( D )有关。A、介质的弹性 B 介质的密度 C、超声波波型 D、以上全部1.10 在同一固体材料中,纵、横渡声速之比,与材料的( C )有关?A、密度 B、弹性模量 C、泊松比 D、以上全部1.11 质点振动方向垂直于波的传播方向的波是( B )A、纵波 B、横波 C、表面波 D、兰姆波1.12 在流体中可传插:( A )A、纵波 B、横波C、纵波、横波及表面波 D、切变波1.13 超声纵波、横波和表面波速度主要取决于:( C )A、频率

24、B、传声介质的几何尺寸C、传声材料的弹性模量和密度 D、以上都不全面,须视具体情况而定1.14 板波的速度主要取决于:( D )A、频率 B、传声介质的几何尺寸C、传声材料的弹性和质量 D、以上都不全面,须视具体情况定1.15 钢中超声波纵波声速为 590000cm/s,若频率为 10MHz 则其波长为:( C )A、59mm B、5.9mmC、0.59mm D、2.36mm1.16 下面哪种超声波的波长最短( A )A、水中传播的 2MHz 纵波 B、钢中传播的 2.5MHz 横波 C、钢中传播的 5MHz 纵波 D、钢中传播的 2MHz 表面波 1.17 一般认为表面波作用于物体的深度大约

25、为( C )A、半个波长 B、一个波长 C、两个波长 D、3.7 个波长1.18 钢中表面波的能量大约在距表面多深的距离会降低到原来的 1/25。 ( B )A、五个波长 B、一个波长 C、1/10 波长 D、0.5 波长1.19 脉冲反射法超声波探伤主要利用超声波传播过程中的( B )A、散射特性 B、反射特性 C、透射特性 D、扩散特性1.20 超声波在弹性介质中传播时有( D )A、质点振动和质点移动 B、质点振动和振动传递C、质点振动和能量传播 D、B 和 C1.21 超声波在弹性介质中的速度是( B )A、质点振动的速度 B、声能的传播速度C、波长和传播时间的乘积 D、以上都不是1.

26、22 若频率一定,下列哪种波型在固体弹性介质中传播的波长最短:( D )A、剪切波 B、压缩波 C、横渡 D、瑞利表面波(表面波)1.23 材料的声速和密度的乘积称为声阻抗,它将影响超声波( B )A、在传播时的材质衰减B、从一个介质到达另一个介质时在界面上的反射和透射C、在传播时的散射 D、扩散角大小1.24 声阻抗是:( C )A、超声振动的参数 B、界面的参数C、传声介质的参数 D、以上都不对1.25 当超声纵波由水垂直射向钢时,其透射系数大于 1,这意味着:( D )A、能量守恒定律在这里不起作用B、透射能量大于入射能量C、A 与 B 都对 D、以上都不对1.26 当超声纵波由钢垂直射

27、向水时,其反射系数小于 0,这意味着:( B )A、透射能量大于入射能量B、反射超声波振动相位与入射声波互成 180。 C、超声波无法透入水中 D、以上都不对1.27 垂直入射于异质界面的超声波束的反射声压和透射声压:( C )A、与界面二边材料的声速有关B、与界面二边材料的密度有关C、与界面二边材料的声阻抗有关D、与入射声波波型有关1.28 在液浸探伤中,哪种波会迅速衰减:( C ) (衰减系数与波速、密度成反比,频率的平方成正比)A、纵波 B、横波 C、表面波 D、切变波1.29 超声波传播过程中,遇到尺寸与波长相当的障碍物时,将发生( B )A、只绕射,无反射 B、既反射又绕射C、只反射

28、无绕射 D、以上都可能1.30 在同一固体介质中,当分别传播纵、横波时,它的声阻抗将是( C )A、一样 B、传播横波时大C、传播纵波时大 D、无法确定1.31 超声波垂直入射到异质界面时,反射波与透过波声能的分配比例取决于( C )A、界面两侧介质的声速 B、界面两侧介质的衰减系数C、界面两侧介质的声阻抗 D、以上全部1.32 在同一界面上,声强透过率 T 与声压反射率 r 之间的关系是( B )A、T=r 2 B、T=1-r 2 C、T= 1+r D、T=1-r1.33 在同一界面上声强反射率 R 与声强透过率 T 之间的关系是( D )A、R+T=1 B、T=1-R C、R=1-T D、

29、以上全对1.34 超声波倾斜入射至异质界面时,其传播方向的改变主要取决于( B )A、界面两侧介质的声阻抗 B、界面两侧介质的声速C、界面两侧介质衰减系数 D、以上全部1.35 倾斜入射到异质界面的超声波束的反射声压与透射声压与哪一因素有关( D )A、反射波波型 B、入射角度C、界面两侧的声阻抗 D、以上都是1.36 纵波垂直入射水浸法超声波探伤,若工件底面全反射,计算底面回波声压公式:( )T=4Z1Z2/(Z1+Z2)1.37 一般地说,如果频率相同,则在粗晶材料中穿透能力最强的振动波型为( B )A、表面波 B、纵波C、横波 D、三种波型的穿透力相同1.38 不同振动频率,而在钢中有最

30、高声速的波型是:( A ) (在同一介质中,波速与频率无关)A、0.5MHz 的纵波 B、2.5MHz 的横波C、10MHz 的爬波 D、5MHz 的表面波1.39 在水钢界面上,水中入射角为 17,在钢中传播的主要振动波型为( C 答案为什么不是 B 呢 )A、表面波 B、横波 C、纵波 D、B 和 C1.40 当超声纵波由有机玻璃以入射角 15 射向钢界面时,可能存在( D )A、反射纵波 B、反射横波C、折射纵波和折射横渡 D、以上都有1.41 如果将用于钢的 K2 探头去探测铝(CFe=3.23km/s,CAl=3.10km/s) 则 K 值会( B ) 。A、大于 2 B、小于 2C

31、、仍等于 2 D、还需其它参数才能确定1.42 如果超声纵波由水以 20 入射到钢界面,则在钢中横波折射角为( A ) 。A、约 48 B、约 24 C、39 D 以上都不对1.43 第一临界角是:( C )A、折射纵波等于 90 时的横波入射角B、折射横渡等于 90 时的纵波入射角C、折射纵波等于 90 时的纵波入射角D、入射纵波接近口 0 时的折射角1.44 第二临界角是:( B )A、折射纵波等于 90 时的横波入射角B、折射横波等于 90 时的纵波入射角C、折射纵波等于 90 时的纵波入射角D、入射纵波接近 90 对的折射角1.45 要在工件中得到纯横波,探头入射角 必须:( C )A

32、、大于第二临界角 B、大于第一临界角C、在第一、第二临界角之间 D、小于第二临界角1.46 一般均要求斜探头楔块材料的纵波速度小于被检材料的纵波声速,因为只有这样才有可能:(A)A、在工件中得到纯横波 B、得到良好的声束指C、实现声束聚焦 D、减少近场区的影响1.47 纵波以 20。 入射角自水入射至钢中,下图中哪一个声束路径是正确的?( D )横波不能在水中传播1.48 用入射角为 52。 的斜探头探测方钢,下图中哪一个声束路径是正确的?( D )1.49 直探头纵波探测具有倾斜底面的锻钢件,下图中哪一个声束路径是正确的?( B )1.50 第一介质为有机玻璃(C L=2700m/s),第二

33、介质为铜(C L=4700m/s;Cs=2300m/s),则第临界角为(B)1.5l 用 4MHz 钢质保护膜直探头经甘油耦合后,对钢试件进行探测,若要得到最佳透声效果,其耦台层厚度为(甘油 CL=1920ms) ( D )A、1.45mm B、0.20mm C、0.7375mm D、0.24mm1.52 用直探头以水为透声楔块使钢板对接焊缝中得到横检测,此时探头声束轴线相对于探测面的倾角范围为:( B ) A、14.727.7 B、62.375.3C、27.2 56.7 D、不受限制1.53 有一不锈钢复合钢板,不锈钢复合层声阻抗 Z1,基体钢板声阻抗 Z2,今从钢板一侧以 2.5MHz 直

34、探头直接接触法探测,则界面上声压透射率公式为:( C )1.54 由材质衰减引起的超声波减弱 db 数等于:( A )A、衰减系数与声程的乘积 B、衰减系数与深度的乘积C、e -s( 为衰减系数,s 为声程) D 以上都不对 1.55 超声波(活塞波)在非均匀介质中传播,引起声能衰减的原因是:( D ) A、介质对超声波的吸收 B、介质对超声波的散射 C、声束扩散 D、以上全部1.56 斜探头直接接触法探测钢板焊缝时,其横波:( D ) A、在有机玻璃斜楔块中产生 B、从晶片上直接产生 C、在有机玻璃与耦合层界面上产生 D、在耦合层与钢板界面上产生1.57 制作凹曲面的聚焦透镜时,若透镜材料声

35、速为 C1,第二透声介质声速为 C2,则两者材料应满足如下关系:( A )A、C1C2 B、C1C2 C、CI=C2 D、Z1=Z21.58 当聚焦探头声透镜的曲率半径增大时,透镜焦距将:( A ) A、增大 B、不变 C、减小 D 以上都不对 1.59 平面波在曲界面上透过情况,正确的图是:( B ) 1.60 以下关于板波性质的叙述,哪条是错误的( D )A、按振动方向分,板波可分为 SH 波和兰姆波,探伤常用的是兰姆波B、板渡声速不仅与介质特性有关,而且与板厚、频率有关C、板波声速包括相速度和群速度两个参数D、实际探伤应用时,只考虑相速度无须考虑群速度1.61 由材料晶粒粗大而引起的衰减

36、属于( B )A、扩散衰减 B、散射衰减 C、吸收衰减 D、以上都是1.62 与超声频率无关的衰减方式是( A )(扩散衰减只与波振面的形状有关)A、扩散衰减 B、散射衰减 C、吸收衰减 D、以上都是1.63 下面有关材料衰减的叙述,哪句话是错误的;( D )A、横渡衰减比纵波严重B、衰减系数一般随材料的温度上升而增大 C、当晶粒度大于波长 1/10 时对探伤有显著影响D、提高增益可完全克服衰减对探伤的影响2.1 波束扩散角是晶片尺寸和传播介质中声波波长的函数并且随( B )A、频率增加,晶片直径减小而减小 B、频率或晶片直径减小而增大 C、频率或晶片直径减小而减小D、频率增加,晶片直径减小而

37、增大2.2 晶片直径 D=20mm 的直探头,在钢中测得其零幅射角为 10,该探头探测频率约为:( D )A、2.5MHz B、5MHz C、4MHz D、2MHz 2.3 直径中 12mm 晶片 5MHz 直探头在钢中的指向角是:( C ) A、5.6 B、3.5 C、6.8 D、24.62.4 14mm,2.5MHz 直探头在钢中近场区为:( B )A、27mm B、21mm C、38mm D、以上都不对2.5 上题探头的非扩散区长度约为:( A )A、35mm B、63mm C、45mm D、以上都不对2.6 在非扩散区内大平底距声源距离增大 l 倍,其回波减弱( D )A、6db B、

38、12db C、3db D、0db2.7 利用球面波声压公式(P= PoD 24)得到的规则反射体反射声压公式应用条件是:( D )A、S2N 近似正确 B、S3N 基本正确C、S6N 正确 D、以上都对2.8 在超声探头远场区中:( B )A、声束边缘声压较大 B、声束中心声压最大C、声束边缘与中心强度一样 D、声压与声束宽度成正比2.9 活塞波声场,声束轴线上最后一个声压极大值到声源的距离称为( A )A、近场长度 B、未扩散区 C、主声束 D、超声场2.10 下列直探头,在钢中指向性最好的是( C )A、2.5P20Z B、3P14Z C、4P20Z D、5P14Z2.11 下面有关扩散角

39、的叙述-哪一条是错误的( B )A、用第一零辐射角表示 B、为指向角的一半C、与指向角相同 D、是主声束辐射锥角之半2.12 超声场的未扩散区长度( C )A、约等于近场长度 B、约等于近场长度 0.6 倍C、约为近场长度 1.6 倍 D、约等于近场长度 3 倍2.13 远场范围的超声波可视为( C )A、平面波 B、柱面波 C、球面波 D、以上都不对2.14 在探测条件相同的情况下面积比为 2 的两个平底孔,其反射波高相差( A )A、6dB B、12dB C、9dB D、3dB2.15 在探测条件相同的情况下,孔径比为 4 两个球形人工缺陷,其反射波高相差( B )A、6dB B、l2dB C、24dB D、8dB2.16 在探测条件相同的情况下,直径比为 2 的两个实心圆柱体,其曲底面同波相差( C )A、12dB B、9dB C、6dB D、3dB ;2.17 外径为 D,内径为 d 的实心圆柱体,以相同的灵敏度在内壁和外圆探测,如忽略耦合差异,则底波高度比为( D )

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 实用文档资料库 > 策划方案

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。