调制信号识别.doc

上传人:hw****26 文档编号:3814096 上传时间:2019-07-23 格式:DOC 页数:11 大小:391KB
下载 相关 举报
调制信号识别.doc_第1页
第1页 / 共11页
调制信号识别.doc_第2页
第2页 / 共11页
调制信号识别.doc_第3页
第3页 / 共11页
调制信号识别.doc_第4页
第4页 / 共11页
调制信号识别.doc_第5页
第5页 / 共11页
点击查看更多>>
资源描述

1、调制信号的小波分析一、小波函数简介1.Haar 小波最简单的小波函数,Haar 小波是离散的,与阶跃信号相似,同 Daubechies db1 小波是一样的。2. Daubechies 小波Daubechies 小波是紧支正则小波,便于进行离散小波分析。这类小波没有显式的表达式,除了 db1(Haar) 。然而它的传递函数的模的平方是有简单的表达式的。3. Biorthogonal 小波此类小波具有线性相位,用于信号和图像重建。4. Coiflet 小波这个小波族是 I.Daubechies 应 R.Coifman 的要求所创建的,coif N 较 dbN 有更好的对称性。5.Symlets

2、小波此小波由 Daubechies 提出,作为对 db 小波族的修正,是一种近似对称小波,它和 db 小波族的性质是近似的。6.Morlet 小波其尺度函数不存在,小波函数为 ,Morlet 小波不满足容许xexx5cos)(2性条件。7.Mexican Hat 小波小波函数为 ,它是 Gaussian 概率密度函数的二阶241)(32()xex导数,由于它不存在尺度函数,因此不具有正交性。8.Meyer 小波Meyer 小波的尺度函数和小波函数都在频域中定义,都具有显式的表达式。二、连续小波变换从数学上来说,傅里叶变换就是将信号 乘以一个复指数后在所有的时)(tf间域上求和。变换的结果就是傅

3、里叶系数。相似的,连续小波变换(CWT)定义为,将信号乘以由尺度和位移确定的小波函数后,再在整个时间轴上相加。CWT 的变换结果是很多小波系数 C,C 是尺度和位移的函数。大尺度对应于时间上伸展大的小波,小波伸展地越大,所比较的信号段就越长,所以小波系数所量度的信号特征也就越粗糙。在计算机中,任何实数域的信号处理都是对离散信号的操作,那么,CWT的连续性及它与 DWT 的区别表现在尺度的选取和对位移的操作。与离散小波变换不同的是,只要在计算机的计算能力之内,CWT 可以在每一个尺度上计算;在位移上连续是指小波可以在待分析函数的整个域上进行平滑的移动。三、离散小波变换对于大多数信号来说,低频部分

4、往往是最重要的,给出了信号的特征。而高频部分则与噪音及扰动联系在一起。将信号的高频部分去掉,信号的基本特征仍然可以保留。信号的概貌主要是系统大的、低频的成分,大尺度;而细节往往是信号局部、高频成分,小尺度。分解算法:1.产生两组系数:概貌系数 cA1 和细节系数 cD1。通过低通滤波器 Lo_D 卷积信号 s 得到 cA1,通过高通滤波器 Hi_D 卷积 s 得到 cD1,之后进行二抽取。每个滤波器的长度是 2N。如果 n = length (s),那卷积后概貌信号和细节信号的长度为 n + 2N - 1,进行二抽取之后 cA1 和 cD1 的长度为 floor(n-1)/2)+N 。 关于

5、matlab 中 cwt 算法的分析cwt 算法的主要程序如下:function coefs = cwt(signal,scales,wname,plotmode,xlim)precis = 10;signal = signal(:); 输入信号len = length(signal);coefs = zeros(length(scales),len); 设置小波系数数组nbscales = length(scales);psi_integ,xval = intwave(wname,precis); 根据不同的小波计算其积分值wtype = wavemngr(type,wname);if wt

6、ype=5 , psi_integ = conj(psi_integ); end wtype5 说明如果是没有尺度函数的复小波,将小波积分值取复共轭xval = xval-xval(1);dx = xval(2);xmax = xval(end);ind = 1;for k = 1:nbscales 计算各个尺度的信号的连续小波变换值a = scales(k);j = 1+floor(0:a*xmax/(a*dx); 设置 j,对积分值 psi_integ 进行采样例 a=4,(0:1:4*xmax)/4*dx if length(j)=1 , j = 1 1; endf = fliplr(p

7、si_integ(j); 将积分值即小波滤波器系数反转coefs(ind,:) = -sqrt(a)*wkeep(diff(conv(signal,f),len); 将信号与小波系数 f 进行卷积,再差分,截取中间数值ind = ind+1;enddummyCoefs = coefs;dummyCoefs = abs(dummyCoefs);plotCOEFS(axeAct,dummyCoefs,plotPARAMS); 可见,cwt 画出的是小波变换系数的绝对值 dummyCoefs,而返回值是 coefs,不是绝对值。算法理论分析:由于 是与 的分段积分进行卷积,所以在程序中出现了一个 d

8、iff)(ks)(abt运算,对相邻的两个 coefs 值进行相减,因此在变换图中,在不同频率变换处,出现混叠发散现象,难以得到准确清晰的频率分辨。四、调制信号识别(一)利用模式识别方法分类调制类型,所用的分类特征归纳起来主要有以下几种:1直方图特征Liedtke 等人利用幅度、频率和相位的直方图分类通信信号。2统计矩特征由于直方图分类特征的维数太大,现在常用的分类特征是信号瞬时幅度、相位和频率函数的各阶统计矩特征。3变换域特征把信号变换到其它特征空间,利用新特征空间中的特征参数来识别调制类型。(二)模最大值法对于 3 种基本的调制信号:ASK,FSK 和 PSK 信号,可以将它们进行小波变换

9、,分析变换后的参数特征来识别。采用提取模最大值的方法来提取三种信号在小波变换域中的特征进行识别。模极大值的定义:对 邻域内的任意点 ,若在尺度 上满足0xxs,则称 为一模极大值点, 称为在 点),(),(0sWfsxf),(s ),(0xWf),(0xs的小波变换模极大值。小波变换模极大值携带了信号的大部分信息,信号的所有奇异值点都被极大值点定位。Mallat 证明了,通过模极大值可以对原始信号进行重建,得到一个近似的逼近。因此提取模极大值可以分析信号的特征。小波变换为什么能产生一个极大值?小波函数 可以描述为一个带通)(,ta滤波器组的脉冲响应, , 是带通滤波器的中心频率, 是要分析信f

10、a/0f号的频率。随着 的变化,这样的一组滤波器,在时间轴上滑动,即 改变,信号的不同频率成分将有可能进入其通带,对小波变换的模起到主要作用,当信号的某个频率不但进入其通带而且其频率恰好等于滤波器组的中心频率 时,0f将使得小波变换在此区域附近产生一个极大值,即 局部最大。),(aW提取所有时间轴上的模极大值,得到一条脊线,即为小波脊线法。具体方法是,对任一固定时刻 ,遍历小波的尺度 ,找到 在所有尺度上的最 ),(大值。之后找到每个最大值所对应的尺度,根据尺度和频率的对应关系,将尺度转换成频率,根据极大值的产生原理,这个频率就是输入信fa/0号的频率。对每个时刻进行如此循环操作,便得到输入信

11、号的频率曲线。问题:1、主要提取信号的频率特征,通过分析频率曲线的阶数 ,可识别PFSK 信号和 ASK、PSK 信号。如果 ,则此信号是 ASK 或 PSK 信号;如果1P,则此信号是 FSK 信号,并且根据频率曲线可知此信号在某个时刻的频率。P对识别 FSK 信号比较有效。2、当信号的频率比较高时,识别效果比较好。3、由于 cwt 变换在信号跳变处的混叠发散现象,在最大值搜索中,搜到一些伪最大值,影响了真实频率的提取。ASK 信号识别,SNR=5.7dBPSK 信号,SNR=3.6dBFSK 信号,SNR=3.8dB高斯噪声在通信理论中,最重要的概率密度函数是高斯或正态概率密度函数。统计学

12、中的中心极限定理指出:在非常宽的条件下,大量 个统计独立的随机变量N之和 的分布律,不管每个 的分布律如何,在 的极限情况下,ixNixZ1 ix趋于高斯正态分布。因此,高斯噪声是指其统计分布服从正态分布的噪声。根据中心极限定理,高斯噪声是普遍存在的一种随机信号,这也是在分析设计中常常采用高斯噪声假设的原因。七、过零点检测过零点抽样,在现代模式识别中是一个非常具有吸引力的工具,具有广泛的应用。当输入信号穿越零值点时,过零点抽样记录下这些时刻。当接收信号的相位变化时,过零点抽样提供了大量的有效信息,可以进行CW,AM,FSK,PSK 等信号的识别。13 个序列利用接收到的信号,可以创建 3 个序

13、列 。当接收信号进行过零)(,)(izyix点抽样后,过零的时刻组成了一个过零序列 。为了从 中提取,.21)(Ni)(ix相位和频率信息,又创建了 和 两个序列。)(iyz,.)(1ix21()Nyiz2.相关过零变量的概率密度函数设接收信号 由正弦型信号和噪声组成:)(t 0)(2cos)( TttvfAtc第 个过零点为i Niifixc ,.21)(5.0)(是由噪声和误差引起的随机变量。在高 CNR 下, 的密度函数是高斯)(i )(i分布的,其均值为零,方差为 22)(1cf是 CNR,定义为 。那么过零间隔 为)0(2Aiy)(21ifiyc因此, 是关于频率量度的一个序列。 是

14、对 变换的一)(iy )(iyiz)(i个量度序列。上式中 , 的值依赖于载波的相位。如果 在)(1()ii )(2ixfc(mod )附近,则2/ )1()(21)(ixviAfic如果 在 (mod )附近,则)(2ixfc/3)1()(21)(ixvific推导:是使 为零的点, 当 , 。)(ix)(tr)(it0tr2cosixfAvc)(5.0ific)(2)cos(ifiAcsn如果 在 (mod )附近,则 也大约在 (mod )附近。)(2ixfc/ 2i2/)(sin)(ifAixvc当 很小时, 。)(2ifc2)(ficcfAixvi)(则 。)(1(2)(1() ii

15、fAiic如果 在 (mod )附近,则 也大约在 (mod )附2ixfc/32i2/3近。 )(sin)(ifixvccfAxvi2则 。)(1(2)(1() iifAiic在信号发生变化的时刻,例如幅度,频率,相位发生改变时,所采样的过零点也会产生不规则的突变,称这些点为码间异变点。码间异变点影响了对信号频率和码元速率的估计,因此在估计信号频率的时候,需要剔除这些点。由于序列是关于频率量度的一个序列,将 中过大的点除掉,得到 序列。)(iy )(iy)(iya(具体方法是:首先考察 序列,计算密集部分的 的标准方差 ,)(iz )(izza找出对应于 的 点,将其剔除。 为一个适合的门限。 )zaiz034.)(yza034.序列的长度为 ,则信号频率 ,做出 的直方图,可以iyayN)(21iyfaccf分辨出信号是单频还是多频,如果是多频有哪几个频率组成。由此可以识别出ASK,PSK 和 FSK 信号,还可以对 FSK 信号进行类内识别。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 实用文档资料库 > 策划方案

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。