函数值域求法大全.doc

上传人:hw****26 文档编号:3821902 上传时间:2019-07-31 格式:DOC 页数:9 大小:181.12KB
下载 相关 举报
函数值域求法大全.doc_第1页
第1页 / 共9页
函数值域求法大全.doc_第2页
第2页 / 共9页
函数值域求法大全.doc_第3页
第3页 / 共9页
函数值域求法大全.doc_第4页
第4页 / 共9页
函数值域求法大全.doc_第5页
第5页 / 共9页
点击查看更多>>
资源描述

1、函数值域复习-日期函数值域求法十一种在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。确定函数的值域是研究函数不可缺少的重要一环。对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。本文就函数值域求法归纳如下,供参考。1. 直接观察法对于一些比较简单的函数,其值域可通过观察得到。例 1. 求函数 x1y的值域。解: 0显然函数的值域是: ),0(),(例 2.

2、求函数 x3y的值域。解: 0,x故函数的值域是: ,2. 配方法配方法是求二次函数值域最基本的方法之一。例 3. 求函数 2,1x,52y的值域。解:将函数配方得: 4)( ,1x由二次函数的性质可知:当 x=1 时, ymin,当 1x时, 8ymax故函数的值域是:4,83. 判别式法例 4. 求函数 2x1y的值域。解:原函数化为关于 x 的一元二次方程0)(x)(2(1)当 时, R1y4解得: 23(2)当 y=1 时, 0x,而 23,函数值域复习-日期故函数的值域为 23,1例 5. 求函数 )x(y的值域。解:两边平方整理得: 0y)1(22(1) Rx 08)1(42解得:

3、 y但此时的函数的定义域由 0)x2(,得 2x由 0,仅保证关于 x 的方程: 0y)1(2在实数集 R 有实根,而不能确保其实根在区间0,2上,即不能确保方程(1)有实根,由 求出的范围可能比 y的实际范围大,故不能确定此函数的值域为 3,。可以采取如下方法进一步确定原函数的值域。 2x00)(y1,min代入方程(1)解得:2,x4即当 21时,原函数的值域为: 1,0注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。4. 反函数法直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。例 6. 求函数 6x543值域。解

4、:由原函数式可得: 3y56则其反函数为: x4,其定义域为: 53x故所求函数的值域为:5,5. 函数有界性法直接求函数的值域困难时,可以利用已学过函数的有界性,反客为主来确定函数的值域。例 7. 求函数 1eyx的值域。函数值域复习-日期解:由原函数式可得: 1yex 0ex 1y解得: 故所求函数的值域为 )1,(例 8. 求函数 3xsincoy的值域。解:由原函数式可得: y3xcosi,可化为:)(i12即 1yxsn2 R ,)(i即 1y32解得: 4故函数的值域为 2,6. 函数单调性法例 9. 求函数 )10x2(log2y35x的值域。解:令 ,1则 2,在2,10上都是

5、增函数所以 在2,10上是增函数当 x=2 时, 812logy3min当 x=10 时, 95ax故所求函数的值域为: ,81例 10. 求函数 xy的值域。解:原函数可化为: 12令 1,x21,显然 2y,在 ,上为无上界的增函数所以 y, 在 ,上也为无上界的增函数函数值域复习-日期所以当 x=1 时, 21y有最小值 ,原函数有最大值2显然 0y,故原函数的值域为 ,0(7. 换元法通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作用。例 11. 求函数 1xy的值域。解:令 t1x

6、, )0(则 t2 43)2t(又 0t,由二次函数的性质可知当 时, 1ymin当 t时, 故函数的值域为 ),例 12. 求函数 2)1x(2xy的值域。解:因 0)1(即 2故可令 ,cos 1cosiny21)4sin(250,21)4sin(20故所求函数的值域为 ,0例 13. 求函数 1x2y43的值域。解:原函数可变形为: 22x可令 tgx,则有2cos1,sinx14cosin2y函数值域复习-日期当 82k时, 41ymax当时, in而此时 tan有意义。故所求函数的值域为 41,例 14. 求函数 )1x)(cos(siny, 2,的值域。解: 1xicosin令 t

7、,则)t(2csi2)1t(2)1t(y由 4/xsincoxsin且 ,可得: 2t当 t时,3ymax,当 2t时, 243y故所求函数的值域为 ,24。例 15. 求函数 x5y的值域。解:由 0x52,可得 |故可令 ,cos4)sin(10i4y 05当 4/时, 104ymax当 时, in故所求函数的值域为: ,58. 数形结合法其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。函数值域复习-日期例 16. 求函数 22)8x()(y的值域。解:原函数可化简得: |8x|2|y上式可以看成数轴上点

8、 P(x)到定点 A(2) , )(B间的距离之和。由上图可知,当点 P 在线段 AB 上时, 10|A|8x|y当点 P 在线段 AB 的延长线或反向延长线上时, |B2故所求函数的值域为: ,10例 17. 求函数 5x43x6y22的值域。解:原函数可变形为: 2)10()()0()3x(上式可看成 x 轴上的点 ,P到两定点 ),(B,3A的距离之和,由图可知当点 P 为线段与 x 轴的交点时, 43)12(3|ymin ,故所求函数的值域为 ,43例 18. 求函数 5x413x6y22的值域。解:将函数变形为: 222)10()()0()( 上式可看成定点 A(3,2)到点 P(x

9、,0)的距离与定点 ,B到点 )0,x(P的距离之差。即: |BP|y由图可知:(1)当点 P 在 x 轴上且不是直线 AB 与 x 轴的交点时,如点 ,则构成ABP,根据三角形两边之差小于第三边,有 26)1()23(| 即: 6y2(2)当点 P 恰好为直线 AB 与 x 轴的交点时,有 26|AB|P|综上所述,可知函数的值域为: ,(注:由例 17,18 可知,求两距离之和时,要将函数式变形,使 A、B 两点在 x 轴的两函数值域复习-日期侧,而求两距离之差时,则要使 A,B 两点在 x 轴的同侧。如:例 17 的 A,B 两点坐标分别为:(3,2) , )1,2(,在 x 轴的同侧;

10、例 18 的A,B 两点坐标分别为(3,2) , )1,(,在 x 轴的同侧。9. 不等式法利用基本不等式 abc3a,b2a)R,(,求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时需要用到拆项、添项和两边平方等技巧。例 19. 求函数4)xcos1()xsin1(iy22的值域。解:原函数变形为: 52xcottan3se1si)cox(in22222当且仅当 即当 4k时 )z(,等号成立故原函数的值域为: ,5例 20. 求函数 x2siny的值域。解: coxsi4n227643/)xsin2xsi(i8(i12当且仅当 xsin2xsin2,即

11、当 32si时,等号成立。由 764y2可得: 98y3故原函数的值域为: ,10. 一一映射法原理:因为)0c(dxbay在定义域上 x 与 y 是一一对应的。故两个变量中,若知道一个变量范围,就可以求另一个变量范围。函数值域复习-日期例 21. 求函数 1x23y的值域。解:定义域为 21x|或由 1x23y得 3y2故或 21x解得 2y3或故函数的值域为,3,11. 多种方法综合运用例 22. 求函数 3x2y的值域。解:令 )0t(t,则 1t2(1)当 t时, t1t2,当且仅当 t=1,即 1x时取等号,所以2y0(2)当 t=0 时, y=0。综上所述,函数的值域为: 21,0注:先换元,后用不等式法例 23. 求函数 423x1y的值域。解: 42x1令 2tanx,则22cosxsi1 1sin2sin21coy674si函数值域复习-日期当 41sin时, 167ymax当 时, 2in此时 2ta都存在,故函数的值域为 167,2注:此题先用换元法,后用配方法,然后再运用 sin的有界性。总之,在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 实用文档资料库 > 策划方案

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。