山东省2017年普通高等教育专升本高等数学(公开课)考试要求.doc

上传人:hw****26 文档编号:3930224 上传时间:2019-08-26 格式:DOC 页数:7 大小:18.83KB
下载 相关 举报
山东省2017年普通高等教育专升本高等数学(公开课)考试要求.doc_第1页
第1页 / 共7页
山东省2017年普通高等教育专升本高等数学(公开课)考试要求.doc_第2页
第2页 / 共7页
山东省2017年普通高等教育专升本高等数学(公开课)考试要求.doc_第3页
第3页 / 共7页
山东省2017年普通高等教育专升本高等数学(公开课)考试要求.doc_第4页
第4页 / 共7页
山东省2017年普通高等教育专升本高等数学(公开课)考试要求.doc_第5页
第5页 / 共7页
点击查看更多>>
资源描述

1、 1 山 东 省 2017 年 普 通 高 等 教 育 专 升 本高 等 数 学 ( 公 共 课 ) 考 试 要 求总要求:考生应了解或理解“高等数学” 中函数、极限和连续、一元函数微分学、一元函数积分学、向量代数与空间解析几何、多元函数微积分学、无穷级数、常微分方程的基本概念与基本理论;学会、掌握或熟练掌握上述各部分的基本方法。应注意各部分知识的结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、运算能力、空间想象能力;有运用基本概念、基本理论和基本方法正确地推理证明,准确地计算的能力;能综合运用所学知识分析并解决简单的实际问题。一、函数、极限和连续(一)函数1.理解函数的概念:函

2、数的定义,函数的表示法,分段函数。2.理解和掌握函数的简单性质:单调性,奇偶性,有界性,周期性。3.了解反函数:反函数的定义,反函数的图象。4.掌握函数的四则运算与复合运算。5.理解和掌握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数。 2 6.了解初等函数的概念。(二)极限1.理解数列极限的概念:数列,数列极限的定义,能根据极限概念分析函数的变化趋势。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。2.了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,掌握极限的四则运算法则。3.理解函数极限的概念:函数在一点处极

3、限的定义,左、右极限及其与极限的关系,x 趋于无穷( x,x+,x-)时函数的极限。4.掌握函数极限的定理:唯一性定理,夹逼定理,四则运算定理。5.理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较。6.熟练掌握用两个重要极限求极限的方法。(三)连续1.理 解 函 数 连 续 的 概 念 : 函 数 在 一 点 连 续 的 定 义 , 左 连 续 和 右连 续 , 函 数 在 一 点 连 续 的 充 分 必 要 条 件 , 函 数 的 间 断 点 及 其 分 类 。2.掌握函数在一点处连续的性质:连续函数的四则运算,复合函

4、数的连续性,反函数的连续性,会求函数的间断点及确定其 3 类型。3.掌握闭区间上连续函数的性质:有界性定理,最大值和最小值定理,介值定理(包括零点定理) ,会运用介值定理推证一些简单命题。4.理 解 初 等 函 数 在 其 定 义 区 间 上 连 续 , 并 会 利 用 连 续 性 求 极 限 。二、一元函数微分学(一)导数与微分1.理解导数的概念及其几何意义,了解可导性与连续性的关系,会用定义求函数在一点处的导数。2.会求曲线上一点处的切线方程与法线方程。3.熟练掌握导数的基本公式、四则运算法则以及复合函数的求导方法。4.掌握隐函数的求导法、对数求导法以及由参数方程所确定的函数的求导方法,会

5、求分段函数的导数。5.理解高阶导数的概念,会求简单函数的 n 阶导数。6.理解函数的微分概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分。(二)中值定理及导数的应用1.了解罗尔中值定理、拉格朗日中值定理及它们的几何意义。2.熟 练 掌 握 洛 必 达 法 则 求 “0/0”、 “/”、 “0”、 “-”、 “1”、 “00” 4 和 “0”型 未 定 式 的 极 限 方 法 。3.掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法,会利用函数的增减性证明简单的不等式。4.理解函数极值的概念,掌握求函数的极值和最大(小)值的方法,并且会解简单的应用问题。5.会判定曲线的凹凸性

6、,会求曲线的拐点。6.会求曲线的水平渐近线与垂直渐近线。三、一元函数积分学(一)不定积分1.理解原函数与不定积分概念及其关系,掌握不定积分性质,了解原函数存在定理。2.熟练掌握不定积分的基本公式。3.熟练掌握不定积分第一换元法,掌握第二换元法(限于三角代换与简单的根式代换) 。4.熟练掌握不定积分的分部积分法。(二)定积分1.理解定积分的概念与几何意义,了解可积的条件。2.掌握定积分的基本性质。3.理解变上限的定积分是变上限的函数,掌握变上限定积分求导数的方法。4.掌握牛顿莱布尼茨公式。5.掌握定积分的换元积分法与分部积分法。 5 6.理解无穷区间广义积分的概念,掌握其计算方法。7.掌握直角坐

7、标系下用定积分计算平面图形的面积。四、向量代数与空间解析几何(一)向量代数1.理解向量的概念,掌握向量的坐标表示法,会求单位向量、方向余弦、向量在坐标轴上的投影。2.掌握向量的线性运算、向量的数量积与向量积的计算方法。3.掌握二向量平行、垂直的条件。(二)平面与直线1.会求平面的点法式方程、一般式方程。会判定两平面的垂直、平行。2.会求点到平面的距离。3.了解直线的一般式方程,会求直线的标准式方程、参数式方程。会判定两直线平行、垂直。4.会判定直线与平面间的关系(垂直、平行、直线在平面上) 。五、多元函数微积分(一)多元函数微分学1.了解多元函数的概念、二元函数的几何意义及二元函数的极值与连续

8、概念(对计算不作要求) 。会求二元函数的定义域。 6 2.理解偏导数、全微分概念,知道全微分存在的必要条件与充分条件。3.掌握二元函数的一、二阶偏导数计算方法。4.掌握复合函数一阶偏导数的求法。5.会求二元函数的全微分。6.掌握由方程 F(x , y,z)=0 所确定的隐函数 z=z(x ,y)的一阶偏导数的计算方法。7.会求二元函数的无条件极值。(二)二重积分1.理解二重积分的概念、性质及其几何意义。2.掌握二重积分在直角坐标系及极坐标系下的计算方法。六、无穷级数(一)数项级数1.理解级数收敛、发散的概念。掌握级数收敛的必要条件,了解级数的基本性质。2.掌握正项级数的比值数别法。会用正项级数的比较判别法。3.掌握几何级数、调和级数与 p 级数的敛散性 。4.了解级数绝对收敛与条件收敛的概念,会使用莱布尼茨判别法。(二)幂级数1.了解幂级数的概念,收敛半径,收敛区间。 7 2.了解幂级数在其收敛区间内的基本性质(和、差、逐项求导与逐项积分) 。3.掌握求幂级数的收敛半径、收敛区间(不要求讨论端点)的方法。七、常微分方程(一)一阶微分方程1.理解微分方程的定义,理解微分方程的阶、解、通解、初始条件和特解。2.掌握可分离变量方程的解法。3.掌握一阶线性方程的解法。(二)二阶线性微分方程1.了解二阶线性微分方程解的结构。2.掌握二阶常系数齐次线性微分方程的解法。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲资料库 > 生活指南

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。