人教版2016年八年级数学下册导学案全册.doc

上传人:wei****016 文档编号:39597 上传时间:2018-05-06 格式:DOC 页数:135 大小:511KB
下载 相关 举报
人教版2016年八年级数学下册导学案全册.doc_第1页
第1页 / 共135页
人教版2016年八年级数学下册导学案全册.doc_第2页
第2页 / 共135页
人教版2016年八年级数学下册导学案全册.doc_第3页
第3页 / 共135页
人教版2016年八年级数学下册导学案全册.doc_第4页
第4页 / 共135页
人教版2016年八年级数学下册导学案全册.doc_第5页
第5页 / 共135页
点击查看更多>>
资源描述

1、人教版2016年八年级下册数学导学案全册第十七章反比例函数课题1711反比例函数的意义课时一课时【学习目标】1理解并掌握反比例函数的概念。2会判断一个给定函数是否为反比例函数。3会根据已知条件用待定系数法求反比例函数的解析式。【重点难点】重点理解反比例函数的意义,确定反比例函数的表达式。难点反比例函数的意义。【导学指导】复习旧知1什么是常量什么是变量函数是如何定义的2我们学过哪几种函数每一种函数形式怎样3写出下列问题中的函数关系式并说明是什么函数(1)梯形的上底长是2,下底长是4,一腰长是6,则梯形的周长Y与另一腰长X之间的函数关系式。(2)某种文具单价为3元,当购买M个这种文具时,共花了Y元

2、,则Y与M的关系式。学习新知阅读教材P39P40相关内容,思考,讨论,合作交流完成下列问题。1什么是反比例函数反比例函数的自变量可以取一切实数吗为什么2仔细观察反比例函数的解析式YK/X,我们还可以把它写成什么形式3回忆我们学过的一次函数和正比例函数,我们是用什么方法求它们的解析式的以此类推,我们也可以采用同样的方法来求反比例函数的解析式。【课堂练习】1下列等式中Y是X的反比例函数的是()Y4XY/X3Y6X1XY12Y5/X2YX/2Y2/XY3/2X2已知Y是X的反比例函数,当X3时,Y7,1写出Y与X的函数关系式;(2)当X7时,Y等于多少【要点归纳】通过今天的学习,你有哪些收获与同伴交

3、流一下。【拓展训练】1函数YM4X3|M|是反比例函数,则M的值是多少2若反比例函数YK/X与一次函数Y2X4的图象都过点A(M,2)1求A点的坐标;(2)求反比例函数的解析式。课题1712反比例函数的图象和性质课时二课时第一课时反比例函数的图象和性质的认识【学习目标】1体会并了解反比例函数图象的意义。2能用描点的方法画出反比例函数的图象。3通过对反比例函数的图象的分析,探索并掌握反比例函数的图象的性质。【重点难点】重点画反比例函数的图象;探索并掌握反比例函数的主要性质。难点画反比例函数的图象;理解反比例函数的性质,并能初步运用。【导学指导】复习旧知1根据上节课的学习,说说反比例函数的意义和如

4、何用待定系数法求反比例函数的解析式。2用描点法画函数图象的步骤是什么2我们研究一次函数YKXBK,B为常数,K0的图象是什么性质有哪些正比例函数呢学习新知1在同一个平面直角坐标系中用不同颜色的笔画出反比例函数Y6/X和Y6/X的图象。并思考,(1)从以上作图中,发现Y6/X和Y6/X的图象是什么(2)Y6/X和Y6/X的图象分别在第几象限(3)在每一个象限Y随X是如何变化的(4)Y6/X和Y6/X的图象之间的关系2请同学们自己给K赋值,再画一组反比例函数的图象,看看是不是反比例函数YK/X(K为常数,K0)的图象都有类似的性质思考影响反比例函数的图象的因素主要是什么图象和坐标轴是否有交点【课堂

5、练习】1教材P43P44练习第1,2题。2已知反比例函数Y4K/X,分别根据下列条件求K的取值范围。(1)函数图象位于第一、三象限;(2)函数图象的一个分支向左上方延伸。【要点归纳】通过今天的学习,你有什么收获与同伴交流一下。【拓展训练】1已知反比例函数Y2AX|A|3中,Y随X的增大而减小,则A2反比例函数YM/X的图象的两个分支在第二、四象限,则点(M,M2)在第象限。3如图是三个反比例函数YK/X,YK/X,YK/X,在X轴上方的图象,由此观察得到K1,K2,K3的大小关系是。第二课时反比例函数的图象和性质的应用【学习目标】1进一步理解和掌握反比例函数的图及其性质。2结合函数图象,能利用

6、待定系数法求函数关系式,并能比较大小。3能灵活运用函数图象和性质解决一些较综合的问题。【重点难点】重点灵活运用反比例函数的性质。难点利用数形结合的思想比较大小及求函数关系式。【导学指导】复习旧知1反比例函数Y2/X的图象在第象限,在每个象限中Y随X的增大而。2已知反比例函数YM/X的图象位于一、三象限,则M的取值范围是。3已知点(3,1)在双曲线YK/X上,则K4面积为4的三角形ABC,一边长为X,设这条边上的高为Y,则Y与X的变化规律用图象表示大致为()5已知Y是X的反比例函数,当X3时,Y2,1写出Y与X的函数关系式;(2)求当X2时Y的值;(3)求当Y4时X的值。学习新知1已知反比例函数

7、的图象经过点A(2,6),(1)这个函数的图象分布在哪些象限Y随X的增大如何变化(2)点B(3,4)、点C(5/2,24/5)、点D(2,5)是否在函数图象上2下图是反比例函数YM5/X的图象的一支,根据图象回答下列问题(1)图象的另一支在哪个象限常数M的取值范围是什么(2)在这个函数图象的某一支上任取点A(A,B)和B(A1,B1)如果AA1,那么B和B1有怎样的大小关系【课堂练习】1教材P45练习第1,2题。2比较练习第1题与学习新知的第1题,你发现了什么3比较练习第2题与学习新知的第2题,你发现了什么【要点归纳】通过本节课的学习,你有什么收获还有什么疑惑与同伴交流一下。【拓展训练】如图,

8、在反比例函数Y6/X的图象上任取一点P,过P点作X轴和Y轴的垂线,垂足分别是N,M,那么四边形ONPM的面积是多少课题172实际问题与反比例函数课时四课时第一课时实际问题与反比例函数【学习目标】1运用反比例函数的概念和性质解决实际问题。2利用反比例函数求出问题中的值。【重点难点】重点运用反比例函数的意义和性质解决实际问题。难点把实际问题转化为反比例函数这一数学模型。【导学指导】复习旧知1反比例函数的意义、图象和性质。2已知Y是X的反比例函数,当X3时,Y5,1写出Y与X的函数关系式;2求当Y2/3时X的值。前面我们学习了反比例函数的意义、图象及其性质,今天我们将研究如何利用反比例函数来解决实际

9、问题。学习新知1某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过湿地,他们沿着前进路线铺垫了若干木板,构筑成一条临时通道,从而顺利完成了任务。(1)你能理解这样做的道理吗(2)若人和木板对湿地地面的压力合计600牛,那么如何用含S的代数式表示PP是S的反比例函数吗为什么(3)当木板面积为02M2时,压强多大当压强是6000PA时,木板面积多大2教材例1。【课堂练习】1教材P54练习第1题。2一个面积为42的长方形,相邻两边长分别为X和Y,写出X与Y的关系式并画出图象。小红的解答Y与X的函数关系式是Y42/X,画出的图象如下图所示。小红的解答对吗为什么【要点归纳】今天

10、你有什么收获还有什么疑惑与同伴交流一下。【拓展训练】某商场出售一批进价为2元的贺卡,在市场营销中发现此商品的日销售单价X元与日销售量Y张之间有如下关系X元3456Y(张)201512101猜测并确定Y与X之间的函数关系。2设经营此贺卡的利润为W元。试求出W与X间的函数关系。若物价局规定此贺卡的售价最高不能超过10元/个,请你求出当日销售单价X定为多少元时,才能获得最大日销售利润第二课时实际问题与反比例函数【学习目标】1进一步体验现实生活与反比例函数的关系。2能解决确定反比例函数中常数K值的实际问题。3进一步运用反比例函数的概念和性质解决实际问题。【重点难点】重点运用反比例函数的知识解决实际问题

11、。难点如何把实际问题转化我数学问题,利用反比例函数的知识解决实际问题。【导学指导】复习旧知1反比例函数的意义、图象和性质。2利用待定系数法求解问题的思路。学习新知自主学习教材P51例2后,讨论、交流合作完成下列问题。1在例2中,什么是不变的由此我们可以得到一个怎样的等量关系这是我们学过的什么函数为什么2今天的例2求出的反比例函数和昨天的例1求出的反比例函数有什么不同那么例2的第2问应如何解决【课堂练习】1教材P54练习第2题。2某蓄水池的排水管每小时排水8立方米,6小时可将满池水全部排空。(1)蓄水池的容积是多少(2)如果增加排水管,使每小时的排水量达到Q立方米,将满池水排空所需要的时间为T小

12、时,求Q与T之间的函数关系式。(3)如果准备在5小时内将满池水排空,那么每小时排水量至少为多少(4)已知排水管的最大排水量为每小时12立方米,那么最少多长时间可将满池水全部排空呢【要点归纳】今天你有哪些收获,与同伴交流一下。【拓展训练】一辆汽车从甲地开往乙地,汽车速度V随时间T的变化情况如图所示。(1)甲乙两地的路程是多少(2)写出T与V的函数关系式。(3)当汽车的速度是75千米/时时,所需时间是多少(4)如果准备在5小时之内到达,那么汽车的速度最少是多少第三课时实际问题与反比例函数【学习目标】1掌握反比例函数在其他学科中的运用,体验学科整合思想。2通过解决“杠杆原理”实际问题与反比例函数关系

13、的探究,能够从函数的观点来解决实际问题。【重点难点】重点运用反比例函数的知识解决实际问题。难点如何把实际问题转化成数学问题,利用反比例函数的知识解决实际问题。【导学指导】希腊科学家阿基米德发现“杠杆定律”后,豪言壮志地说给我一个支点我能撬动这个地球。杠杆定理若两个物体与支点的距离反比于其重量,则杠杆平衡,通俗点说阻力阻力臂动力动力臂学习新知自主学习教材P52例3,讨论、交流合作完成下列问题。1例3中,相等关系是什么由此得到一个什么等式它是什么函数关系2例3第(2)中,至少是什么意思如何解决3用反比例函数的知识解释,我们在使用撬棍时,为什么动力臂越长越省力4希腊科学家阿基米德发现“杠杆定律”后说

14、的撬动地球,请同学们帮他计算一下假定地球的质量的近似值是61025牛顿(即为阻力),假设阿基米德有500牛顿的力量(即为动力),阻力臂为2000千米,计算多长的动力臂才能把地球撬动5同学们还能否举出我们生活中经常碰到的具有“杠杆定律”的物理模型【课堂练习】1教材P54习题172第4题。2教材P55习题172第5题。【要点归纳】本节课你有哪些收获与同伴交流一下。【拓展训练】教材P55习题172第7题。第四课时实际问题与反比例函数【学习目标】1体验现实生活与反比例函数的关系。2掌握反比例函数在其他学科中的运用,体验学科整合思想。3通过解决电学中的问题与反比例函数关系的探究,能够从函数的观点来解释生

15、活中的一些规律。【重点难点】重点运用反比例函数的知识解释生活中的一些规律和解决实际问题。难点如何把实际问题转化为数学问题,利用反比例函数的知识解决实际问题。【导学指导】通过对教材P53内容的自主学习,与同伴的合作交流后,完成下列问题。1电学知识告诉我们,用电器的输出功率P(瓦)、两端的电压U(伏)及用电器的电阻R(欧姆)有如下关系PRU2,这个关系也可以写成P。或R。说明P与R是函数关系。2仔细研究例4后,想一想,为什么收音机的音量、某些台灯的亮度以及电风扇的转速可以调节【课堂练习】1教材P55习题172第5题。2一封闭电路中,电流I(A)与电阻R()的图象如下图,回答下列问题1写出电路中电流

16、I(A)与电阻R()之间的函数关系式。2如果一个用电器的电阻为5,其允许通过的最大电流为1A,那么这个用电器接在这个封闭电路中,会不会烧毁说明理由。【要点归纳】与同伴交流一下你今天的体会。【拓展训练】为了预防疾病,某单位对办公室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量Y(毫克)与时间X(分钟)成正比例,药物燃烧后,Y与X成反比例(如图)现测得药物8分钟燃毕,此时室内空气中每立方米的含药量6毫克,请根据题中所提供的信息,解答下列问题(1)药物燃烧时,写出Y与X的函数关系式,自变量X的取值范围,药物燃烧后,写出Y与X的函数关系式。(2)研究表明,当空气中每立方米的含药量低

17、于16毫克时,员工方可进办公室,那么从消毒开始,至少需要经过几分钟后,员工才能回到办公室(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效为什么本章小结一、画出本章的知识结构图。二、本章的相关知识(一)反比例函数的意义(二)反比例函数的图象和性质(三)反比例函数的应用三、做一做。1函数YM2X3M2是反比例函数时,则M的值是多少2如图,RTABO的顶点A是双曲线YK/X与直线YXK1在第四象限的交点,ABX轴于B,且SABO3/2。1求这两个函数的解析式;(2)求直线和双曲线的两个交点A,C的坐标和AOC的面积。3某水

18、库蓄水160万立方米,由于连降大雨,水库的蓄水量达到了190万立方米,为保证安全,该区地防洪部门决定开闸放水,使水库蓄水量回到160万立方米。(1)写出放水时间T(天)与放水量A(万立方米/天)之间的函数关系。(2)如果每天放水6万立方米,几天可以使水库的蓄水量回到160万立方米4你吃过拉面吗实际上在做拉面的过程中渗透着数学知识一定体积的面团做成拉面,面条的总长度一(M)是面条的粗细(横切面积)XMM2的反比例函数,其图象如图。(1)写出Y与X的函数关系式。(2)若面条的粗细应不小于16MM时,面条的总长度最长是多少第十八章勾股定理课题181勾股定理课时4课时第一课时勾股定理【学习目标】1了解

19、勾股定理的文化背景,体验勾股定理的探索过程。2了解利用拼图验证勾股定理的方法。3利用勾股定理,已知直角三角形的两边求第三边的长。【重点难点】重点探索和体验勾股定理。难点用拼图的方法验证勾股定理。【导学指导】毕达哥拉斯是古希腊著名的数学家,相传2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的某种特性。是什么呢我们来研究一下吧。阅读教材P64P66内容,思考、讨论、合作交流后完成下列问题。1请同学们观察一下,教材P64图1811中的等腰直角三角形有什么特点请用语言描述你发现的特点。2等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也满足这种特点你能解决教材P65

20、的探究吗由此你得出什么结论3我们如何证明你得出的结论呢你看懂我国古人赵爽的证法了吗动手摆一摆,想一想,画一画,证一证吧。【课堂练习】1教材P69习题181第1题。2求下图字母A,B所代表的正方形的面积。3在直角三角形ABC中,C90,若A4,C8,则B【要点归纳】本节课你学到了什么知识还存在什么困惑与同伴交流一下。【拓展训练】1直角三角形的两边长分别是3CM,5CM,试求第三边的长度。2你能用下面这个图形证明勾股定理吗第二课时勾股定理的应用(1)【学习目标】1能熟练的叙述勾股定理的内容,能用勾股定理进行简单的计算。2运用勾股定理解决生活中的问题。【重点难点】重点运用勾股定理进行简单的计算。难点

21、应用勾股定理解决简单的实际问题。【导学指导】复习旧知1什么是勾股定理它描述了直角三角形中的什么的关系2求出下列直角三角形的未知边。3在RTABC中,C90。(1)已知AB12,C5,求A(2)已知B6,A30,求A,C4如下图,长方形ABCD中,长AB是4CM,宽BC是3CM,求AC的长。学习新知先自主解决教材P66的探究1,然后合作交流。【课堂练习】1教材P68练习第1题。2如图所示一个圆柱形铁桶的底面半径是12CM,高为10CM,若在其中隐藏一细铁棒,问铁棒的长度最长不能超过多长【要点归纳】通过本节课的学习你有哪些收获与同伴交流一下。【拓展训练】有一根长70CM的木棒,要放在长、宽、高分别

22、是50CM,40CM,30CM的木箱中,能否放进去第三课时勾股定理的应用(2)【学习目标】1能运用勾股定理的数学模型解决现实世界的实际问题。2通过例题的分析与解决,感受勾股定理在实际生活中的应用。【重点难点】重点运用勾股定理解决实际问题。难点勾股定理的灵活运用。【导学指导】复习旧知1由于台风的影响,一棵树在地面上6米处折断,树顶落在离树干底部8米处,则这棵树在折断前(不包括树根)的高度是。2小民为准备新年元旦晚会,布置拉花时搬来了一架高为25米的梯子靠在墙上,已知梯子上端离地面24米,则梯子离墙角的距离为3如下图,已知在ABC中,ACB90,AB5CM,BC3CM,CDBC于点D,求CD的长。

23、学习新知先自主探究教材P67“探究2”,然后合作交流,并完成教材上的问题。【课堂练习】1教材P68练习第2题。2如下图,图中三个正方形围成一个直角三角形,三个正方形的面积分别是S1、S2、S3,则S1、S2、S3三者之间的关系是。3教材P71习题181第11题。【要点归纳】今天你有什么收获与同伴交流一下。【拓展训练】1某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来65米长的云梯,如果梯子的底部离墙基的水平距离时25米,请问消防队员能否进入三楼灭火2如图,以直角三角形的三边向外作等边三角形,探究S,S和S之间的关系。S1S3S2CBA总结反思第四课时勾股定理的应用(3)【学习

24、目标】1熟练地掌握勾股定理,并能灵活的运用勾股定理解决数学中的实际问题。2能运用勾股定理在数轴上画出表示无理数的点,进一步领会数形结合的思想。【重点难点】重点运用勾股定理解决数学中的实际问题。难点勾股定理的灵活运用。【导学指导】复习旧知1勾股定理的内容。2在RTABC中,ACB90,已知A2,B3,则C,当C13,A5,则B3实数包括和。4数轴上的点和一一对应。5在数轴上画出表示下列各数的点0,2,3,2,101543212345学习新知自主探究教材P69“探究3”,合作交流后完成教材上的问题。【课堂练习】1教材练习第1、2题。2在数轴上画出表示13的点。【要点归纳】今天你有什么收获与同伴交流

25、一下。【拓展训练】1如图,一只壁虎在一座底面半径为1米,高为2米的油桶的下底边沿A处,发现油桶的另一侧的中点B处有一只萤火虫,便决定捕捉它,于是它小心翼翼的向萤火虫爬去,若壁虎要在最短的时间里获得一顿美餐,问壁虎至少要爬行多少路程才能捕到萤火虫取314,结果保留1位小数课题182勾股定理的逆定理课时二课时第一课时勾股定理的逆定理【学习目标】1了解互逆命题和互逆定理的概念。2理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理。3掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是否为直角三角形。【重点难点】重点;勾股定理的逆定理及应用。难点勾股定理的逆定理的证明。【导学指导】复习旧

26、知1勾股定理的内容。2已知在RTABC中,C90,A、B、C是ABC的三边,则(1)已知A3,B4,求C2已知A25,B6,求C3已知A4,B75,求C3思考分别以上述A,B,C为边的三角形的形状是什么样的学习新知阅读教材P73P74相关内容,思考,讨论,合作交流后完成下列问题1命题1和命题2的题设和结论分别是什么2它们的题设和结论有什么联系3你能否举出类似的例子4原命题成立,那么它的逆命题一定成立吗那么怎样才成立呢如何证明命题2成立证证看。【课堂练习】1教材P75练习第1、2题。2在ABC中,AB3,AC4,BC5,则90。3写出下列定理的逆命题,并判断它是否有逆定理。(1)如果两个角是直角

27、,那么它们相等。(2)对顶角相等。【要点归纳】本节课你有什么收获与同伴交流一下。【拓展训练】能够成为直角三角形三条边长的三个正整数,我们称为勾股数,观察下列表格给出的三个数A,B,C,ABC3,4,53242525,12,13521221327,24,25722422529,40,419240241217,B,C172B2C2(1)求出B,C的值。(2)写出你发现的规律。第二课时勾股定理的逆定理的应用【学习目标】1进一步理解勾股定理的逆定理。2能灵活运用勾股定理及逆定理解决实际问题。3进一步加深性质定理与判定定理之间的关系的认识。【重点难点】重点灵活运用勾股定理及逆定理解决实际问题。难点灵活运

28、用勾股定理及逆定理解决实际问题。【导学指导】复习旧知1叙述勾股定理及逆定理。2在RTABC中,C90。(1)已知A6,C10,求B(2)已知A40,B9,求C3直角三角形两条直角边分别是3和4,则斜边上的高是。4判断下列三角形是否是直角三角形(1)A3,B5,C6(2)A3/5,B4/5,C1(3)A3,B22,C17学习新知自主学习教材P75例2,合作交流后完成下列问题(1)如何画出示意图,建立数学模型(2)“海天”号轮船的航行方向会有几种可能【课堂练习】1教材P76练习第3题。2如下图所示三个村庄A、B、C之间的距离分别是AB5KM,BC12KM,AC13KM,要从B修一条公路BD直达AC

29、,已知公路的造价2600万元/KM,求修这条公路的最低造价是多少【要点归纳】谈谈你本节课的收获。【拓展训练】已知,如图四边形ABCD中,B90,AB4,BC3,AD13,CD12,求四边形ABCD的面积。本章小结一、画出本章知识结构图。二、本章相关知识。1勾股定理2勾股定理的逆定理3互逆命题和互逆定理三、做一做。1如图,在两面墙之间有一个底端在A点的梯子,当它靠在一侧的墙上时,梯子的顶端在B点,当它靠在另一侧墙上时,梯子的顶端在D点,已知BAC60,DAE45,DE32M,求BC的长度。ACB45ED602若ABC的三边A、B、C满足A2B2C2506A8B10C,则ABC的形状是什么3下列命

30、题的逆命题正确的是()A如果两个角是直角,那么它们相等B全等三角形的对应角相等C如果两个实数相等,那么它们的平方也相等D。到角的两边距离相等的点在角的平方线上4直角三角形的两条边的长度分别是8和10,试求第三边的长度。5有一个水池,水面是一个边长为10米的正方形。在水池的中央,有一根芦苇,它高出水面1米,把芦苇的顶端拉向水池一边的中点,芦苇和岸边的水面正好平齐,则水的深度是多少6如图,将一张矩形纸片沿着AE折叠后,D点恰好落在BC边上的F点上,已知AB8CM,BC10CM,求EC的长度。第十九章四边形课题191平行四边形课时四课时第一课时1911平行四边形的性质【学习目标】1理解平行四边形的定

31、义及有关概念。2能根据定义探索并掌握平行四边形的对边相等、对角相等的性质。3了解平行四边形在实际生活中的应用,能根据平行四边形的性质进行简单的计算和证明。【重点难点】重点平行四边形的概念和性质。难点如何添加辅助线将平行四边形问题转化为三角形问题解决的思想方法(即为什么要添加对角线)【导学指导】现实世界中,四边形也在装点着我们的生活,宏伟的建筑物,铺满地砖的地板、别具一格的窗棂、天空飞舞的风筝处处都有四边形的身影。在小学,我们已经学过一些特殊的四边形,如长方形、正方形、平行四边形和梯形等,这些特殊的四边形与我们的生活关系更为密切。在章前图中,你能找出它们吗在本章,我们将进一步认识这些特殊的四边形

32、,分析它们的联系与区别,探索并证明它们的性质及判定方法,进一步提高分析问题、解决问题的能力。学习新知阅读教材P83P84内容,思考、讨论、合作交流后完成下列问题1什么叫做平行四边形如何表示一个平行四边形2四边形与平行四边形有怎样的从属关系你能举出生活中的平行四边形的例子吗3平行四边形有什么性质你能证明吗【课堂练习】1教材P84练习第1,2,3题。2如图在平行四边形ABCD中,如果EFAD,GHCD,EF与GH相交于点O,那么图中的平行四边形一共有()A4个B。5个C。8个D。9个3在平行四边形ABCD中,AB的度数之比为54,则C等于()A60B80C100D120【要点归纳】通过学习,本节课

33、你学到了哪些知识与同伴交流一下。【拓展训练】已知任意三点A、B、C,是否存在点D,使A、B、C、D围成一个平行四边形如果存在,请你作出平行四边形;如果不存在请说明理由。第二课时平行四边形的性质(2)【学习目标】1探索并掌握平行四边形的性质平行四边形的对角线互相平分。2会运用平行四边形的性质进行推理和计算。【重点难点】重点平行四边形的对角线互相平分难点平行四边形性质的灵活运用及几何计算题的解题表达。【导学指导】复习旧知1平行四边形是如何定义的生活中有什么物体是平行四边形形状的2前面我们学习了平行四边形的哪些性质3我们是如何证明平行四边形的这些性质的学习新知自主学习教材P85P86内容,思考,讨论

34、,合作交流后完成下列问题。1如下图所示,平行四边形ABCD的对角线有什么特征请用文字语言叙述并用数学符号表示出来。2你能证明你叙述的对角线的特征吗3你发现了吗平行四边形的问题都是如何解决的【课堂练习】1教材P86练习第1,2题。2已知平行四边形ABCD的周长是48CM,AB比BC长4CM,那么这个四边形的各边长为多少3在平行四边形ABCD中,已知BD140,求C的度数。4平行四边形ABCD的周长为60CM,AOB的周长比COB的周长大8CM,则AB,BC。【要点归纳】1完成下列表格平行四边形的图形平行四边形的边平行四边形的角平行四边形的对角线2解决平行四边形问题的常用辅助线是什么3你还有哪些收

35、获【拓展训练】如图,田村有一口呈四边形的池塘,在它的四个角A、B、C、D处均种有一棵梨树,田村准备开始挖池塘建养鱼池,想使建后的鱼池面积为原来池塘面积的两倍,又想保持梨树不动,并要求建后的池塘成为平行四边形形状。请问田村能否实现这一设想若能,请你设计并画出图形,若不能,请说明理由。(画图保留痕迹,不写画法)第三课时1912平行四边形的判定(1)【学习目标】1运用类比的方法,得出平行四边形的两个判定方法。2会运用这两个判定方法解决简单的问题。【重点难点】重点平行四边形判定方法的探究、运用以及平行四边形的性质和判定的综合应用。难点对平行四边形判定方法的证明以及平行四边形的性质和判定的综合应用。【导

36、学指导】复习旧知1平行四边形的定义是什么它有什么作用2平行四边形还有哪些性质3你能说出上述三条性质的逆命题吗把它们有文字表达出来。学习新知自主学习教材P86P87相关内容,思考、讨论合作交流完成下列问题1平行四边形的三条性质的逆命题是真命题吗如何证明的2现在你有多少种判定平行四边形的方法了它们分别是从四边形的哪些方面去考虑的【课堂练习】1教材P87练习题第1,2题。2在同一平面内,把两个全等的三角形(如图),按不同的方法拼成四边形,(1)可以拼成几个不同的四边形(2)它们都是平行四边形吗CABEDF【要点归纳】本节课你有哪些收获【拓展训练】1如图,已知点M、N分别是平行四边形ABCD的边AB、

37、DC的中点。求证四边形AMCN是平行四边形。ADBCNM2如图,在平行四边形ABCD中,E、F、G、H分别是各边中点。求证四边形EFGH是平行四边形。EFGHDACB第四课时1912平行四边形的判定(2)【学习目标】1掌握用一组对边平行且相等来判定平行四边形的方法。2理解和领会三角形三角形中位线定理及其应用。3会综合应用平行四边形的四种判定方法和性质来证明问题。【重点难点】重点1平行四边形各种判定方法及其应用,尤其是根据不同条件能正确地选择判定方法;2理解并应用三角形中位线定理。难点1平行四边形的判定定理与性质定理的综合应用。2理解三角形中位线定理的推导,感悟几何的思维方法。【导学指导】复习旧

38、知1平行四边形的定义是什么2平行四边形具有哪些性质3平行四边形是如何判定的学习新知阅读教材P88P90相关内容,思考、讨论、合作交流后完成下列问题1今天又有了一种判定平行四边形的方法,是什么如何证明2你看得懂例4吗它是如何思考解决问题的由例4我们知道了三角形的中位线的性质,是什么3什么是两条平行线间的距离我们还学过点与点之间的距离,点到直线的距离,它们有何联系与区别【课堂练习】1教材P90练习第1,2,3题。2如图,平行四边形ABCD中,对角线AC、BD相交于O,E、F分别为BO、DO的中点。求证AFCE请你用两种方法证明OADBCFE【要点归纳】今天你有哪些收获与同伴交流一下。【拓展训练】如

39、图,已知BE、CF分别为ABC中B、C的平方线,AMBE于M,ANCF于N,求证MNBCNMFEABC课题192特殊的平行四边形课时五课时第一课时1921矩形的性质【学习目标】1掌握矩形的性质定理及推论。2能熟练应用矩形的性质进行有关证明和计算。【重点难点】重点掌握矩形的性质定理。难点利用矩形的性质进行证明和计算。【导学指导】阅读教材P94P96相关内容,思考、讨论、合作交流后完成下列问题1什么是矩形2矩形是特殊的平行四边形,平行四边形具有的性质它有没有平行四边形的边有什么性质角呢对角线呢那么它特殊在什么地方所以它有什么性质如何记住它呢3矩形的一条对角线把它分成了两个什么三角形由矩形的性质,你

40、可以得到这个三角形的什么性质【课堂练习】1教材P95练习第1,2,3题。2RTABC中,两条直角边分别为6和8,则斜边上的中线长为。【要点归纳】今天你有什么收获与同伴交流一下。【拓展训练】1将矩形纸片ABCD沿对角线BD对折,再折叠使AD与对角线BD重合,得折痕DG,若AB8,BC6,求AG的长。CGDABE2在四边形ABCD中,ABCADC90,E是AC的中点,EF平分BED交BD于点F。(1)猜想EF与BD具有怎样的关系(2)试证明你的猜想。FECABD第二课时矩形的判定【学习目标】1理解并掌握矩形的判定方法。2能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养分析能力。【重

41、点难点】重点矩形的判定定理及推论。难点定理的证明方法及运用。【导学指导】复习旧知1什么是平行四边形什么是矩形2矩形有哪些性质你能猜想如何判定矩形吗学习新知阅读教材P95P96相关内容,思考、讨论、合作交流后完成下列问题1利用矩形的定义可以判定一个平行四边形是矩形,由此你发现什么2还有哪些方法可以证明一个四边形是矩形如何证明试一试。【课堂练习】1教材P96练习第1,2题。2下列各句判定矩形的说法是否正确为什么(1)有一个角是直角的四边形是矩形。(2)有四个角是直角的四边形是矩形。(3)四个角都相等的四边形是矩形。(4)对角线相等的四边形是矩形。(5)对角线相等且互相垂直的四边形是矩形。(6)对角

42、线互相平分且相等的四边形是矩形。(7)对角线相等,且有一个角是直角的四边形是矩形。(8)一组邻边垂直,一组对边平行且相等的四边形是矩形。(9)两组对边分别平行,且对角线相等的四边形是矩形。【要点归纳】今天你有什么收获,与同伴交流一下。【拓展训练】已知如图,平行四边形ABCD的四个内角的平分线分别相交于点E、F、G、H。求证四边形EFGH是矩形。FHGEDAC第三课时1922菱形的性质【学习目标】1理解菱形的定义,掌握菱形的特殊性质。2了解菱形在生活中的应用实例,能根据菱形的性质解决简单的实际问题。3理解菱形的面积公式,会选择适当的方法计算菱形的面积。【重点难点】重点菱形的性质和应用。难点菱形性

43、质的探究。【导学指导】阅读教材P97P98相关内容,思考、讨论、合作交流后完成下列问题1什么是菱形它与平行四边形有何异同2菱形是不是轴对称图形如果是它有几条对称轴3由菱形是轴对称图形你可以得到菱形具有哪些平行四边形不具有的特殊性质呢它的边、对角线之间有什么关系你能证明上述结论吗4通过例2,你发现菱形除了用平行四边形计算面积的方法外,还可以用什么方法来计算吗【课堂练习】1教材P98练习第1,2题。2菱形和矩形都一定具有的性质是()A对角线相等B角线互相平分C对角线互相垂直D每条对角线平分一组对角3菱形的两邻角的度数之比为13,高为72,求它的面积【要点归纳】今天你有什么收获,与同伴交流一下。【拓

44、展训练】如图,已知在菱形ABCD中,E、F分别是BC、CD上的点,且CECF。过点C作CGEA交AF于H,交AD于G,BAE25,BCD130,求AHC的度数。HGADCBEF第四课时菱形的判定【学习目标】1能说出菱形的两个判定定理,并会用判定方法进行相关的论证和计算。2了解菱形的现实应用和常用判别条件。【重点难点】重点菱形的判定方法。难点探究菱形的判定条件并合理利用它进行论证和计算。【导学指导】复习旧知1菱形和矩形分别比平行四边形多了哪些性质2怎样判定一个四边形是矩形学习新知学习教材P99相关内容,思考、讨论、合作交流后完成下列问题1想一想我们以前学的,首先,可以用什么来判定一个四边形是菱形

45、2受矩形判定方法的启发,你对菱形的判定方法有什么猜想你能证明你的猜想吗试试看。【课堂练习】教材P100练习第1,2,3题。【要点归纳】你能画出四边形、平行四边形、矩形和菱形的从属关系图吗试试看。【拓展训练】如图,在四边形ABCD中,点E、F分别是AD、BC的中点,G、H分别是BD、AC的中点,AB、CD满足什么条件时,四边形EGFH是菱形请证明你的结论。GHFEABDC第五课时1923正方形【学习目标】1了解正方形的有关概念。2理解并掌握正方形的性质、判定方法。【重点难点】重点探索正方形的性质与判定。难点掌握正方形的性质、判定的应用方法。【导学指导】复习旧知1矩形有哪些性质如何判定2菱形有哪些

46、性质如何判定3矩形、菱形、平行四边形之间有什么关系请用框图表示出来。学习新知学习教材P100P101相关内容,思考、讨论、合作交流后完成下列问题1什么是正方形它与矩形、菱形有什么关系2正方形有哪些性质(提示从边、角、对角线方面总结)它有没有矩形、菱形不具有的特殊性质是什么3怎样判定一个四边形是正方形呢试证明你的结论,并与同伴交流一下。【课堂练习】1教材P101练习第1,2,3题。2判断(1)两条对角线互相垂直的矩形是正方形。(2)对角线相等的矩形是正方形。(3)四边都相等的四边形是正方形。(4)矩形包括长方形和正方形。(5)四角相等且两边相等的四边形是正方形。【要点归纳】本节课你有哪些收获与同

47、伴交流一下。你能不能用一个框图把四边形、平行四边形、矩形、菱形、正方形之间的关系表示出来【拓展训练】把边长为1的正方形ABCD绕着点A逆时针旋转30得到正方形AB1C1D1,则图中阴影部分的面积是()D1C1B1CDBAA1/2B3/3C13/3D13/4课题193梯形课时二课时第一课时等腰梯形的性质【学习目标】1知道梯形、等腰梯形、直角梯形的有关概念;能说出并证明等腰梯形的两个性质;等腰梯形同一底上的两个角相等;两条对角线相等。2会运用梯形的有关概念和性质进行有关问题的论证和计算。3通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题,体会图形变换的方法和转化的思想。【重点难点】重点探索

48、梯形的有关概念、性质及其应用。难点探索等腰梯形的性质。【导学指导】学习教材P106P107相关内容,思考、讨论、合作交流后完成下列问题1什么是梯形什么是梯形的上底什么是梯形的下底什么是梯形是高什么是梯形的腰2什么是等腰梯形什么是直角梯形3等腰梯形有哪些性质教材上是如何发现的你能证明它吗【课堂练习】1在梯形ABCD中,已知ADBC,B50,C80,ADA,BCB,则DC。2直角梯形的高为6CM,有一个角是30,则这个梯形的两腰分别是和。3等腰梯形ABCD中,ABCD,AC平分DAB,DAB60,若梯形周长为8CM,则AD4等腰梯形ABCD中,AB2CD,AC平分DAB,AB43,(1)求梯形的各

49、角。(2)求梯形的面积。【要点归纳】本节课你有哪些收获,与同伴交流一下。【拓展训练】如图已知在等腰梯形ABCD中,对角线ACBCAD,求DBC的度数。DABC第二课时等腰梯形的判定【学习目标】1掌握同一底上两底角相等的梯形是等腰梯形这个判定方法,以及这个判定方法的证明。2能够运用等腰梯形的性质和判定方法进行有关的论证和计算,体会转化的思想。3通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题,体会图形变换的方法和转化的思想。【重点难点】重点梯形的判别条件。难点解决梯形问题的基本方法。【导学指导】复习旧知1什么是梯形梯形一般分为哪几类2等腰梯形有哪些性质(提示从边、角、对角线等方面整理)学习新知学习教材P108相关内容,思考讨论、合作交流后完成下列问题1前面所学的特殊四边形的判定基本上是性质的逆命题。等腰梯形同一底上两个底角相等的逆命题是什么这个命题是否成立证明一下。2你能尝试着写写等腰梯形其他性质的逆命题并证一下吗【课堂练习】1教材P108第1,2,3,4题。2下列

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育教学资料库 > 试题真题

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。