1、1、工厂负荷情况本厂多数车间为两班制,一年最大负荷利用小数为 4600h,且最大负荷持续时间为 6 小时。该厂除铸造车间为一次负荷,电镀车间、锅炉房和热处理车间为二次负荷外,其余车间为三级负荷。其负荷资料如下:表 1-全厂负荷资料表厂房编号 厂房名称 负荷类别 设备容量/kw 需要系数 功率因数动力 300 0.3 0.71 铸造车间照明 6 0.8 1.0动力 300 0.3 0.62 锻压车间照明 7 0.7 1.0动力 150 0.6 0.753 热处理车间照明 5 0.8 1.0动力 250 0.5 0.84 电镀车间照明 6 0.8 1.0动力 25 0.4 0.85 仓库照明 1
2、0.8 1.0动力 400 0.3 0.656 工具车间照明 8 0.8 1.0动力 350 0.3 0.67 金工车间照明 8 0.8 1.0动力 50 0.7 0.88 锅炉房照明 1 0.8 1.0动力 180 0.3 0.759 装配车间照明 8 0.8 1.0动力 200 0.2 0.6510 机修车间照明 4 0.8 1.0设各用电设备的同时系数 Kp,Kq 均为 0.9.1 负荷计算及无功功率补偿1.1, 负荷计算Pc=Kp =0.9*801.5=721.35KW10iPcQc= Kq =0.9*793.4=714KVar10iQSc= =1015KVA2cP功率因数 cos =
3、Pc/Sc=0.7111.2无功补偿1.2.1 无功补偿概述电力系统中有许多根据电磁感应原理工作的电气设备,如变压器、电动机、感应炉等。都是依靠磁场来传送和转换电能的电感性负载,在电力系统中感应电动机约占全部负荷的50%以上。电力系统中的无功功率很大,必须有足够的无功电源,才能维持一定的电压水平,满足系统安全稳定运行的要求。电力系统中的无功电源由三部分组成:1 发电机可能发出的无功功率(一般为有功功率的 40%50%) 。2 无功功率补偿装置(并联电容器和同步调相机)输出无功功率。3 110kV 及以上电压线路的充电功率。电力系统中如无功功率小,将引起供电电网的电压降低。电压低于额定电压值时,
4、将使发电、送电、变电设备均不能达到正常的出力,电网的电能损失增大,并容易导致电网震荡而解列,造成大面积停电,产生严重的经济损失和政治影响。电压下降到额定电压值的 60%70%时,用户的电动机将不能启动甚至造成烧毁。所以进行无功补偿是非常有必要的。1.2.2 无功补偿的计算补偿前 cos =0.71,求补偿后达到 0.9 以上。因此可以如下计算:1设需要补偿 Qc.c 的无功,补偿后的功率因数为 =0.922Qc.c=Pc*(tan tan )=408KVar12补偿后的计算负荷 Sc= =783.6kvar)40871(35.补偿后功率因数 cos =721.35/783.6=0.921.2.
5、3 无功补偿装置人工补偿主要方法有以下几种:1. 并联电容器人工补偿。采用并联电容器的方法来补偿无功功率是目前用户.企业内广泛采用的补偿装置。具有下列优点:(1) 有功损耗小,为 0.25%-0.5%,而同步调相机为 1.5%-3%;(2) 无旋转部分,运行维护方便;(3) 可按系统需要,增加或减少补偿装置;(4) 个别电容器损坏不影响整个装置运行;2. 同步电动机补偿。随着半导体变流技术的发展,同步电动机的励磁装置已比较成熟,3. 动态无功功率补偿。在现在工业生产中,一些容量很大的冲击性负荷使电网电压波动严重,功率因数恶化。一般电容器的自动投切装置相应太慢无法满足要求。综上所述,此设计采用并
6、联电容器补偿低压集中补偿。在变电所 6-10KV 高压母线上进行人工补偿时,一般采用固定补偿,即补偿电容器不随负荷变化投入或切除。在变电所 0.38KV 母线上进行补偿时,都采用自动补偿。由供变电技术中表 A-2-2 差得选用 BW0.4-14-3 型号的低压并联电容器 30 台。GB50053-199410KV 及以下变电所设计规范规定:高压电容器组宜接成中性点不接地Y 型,容量较小时(450kvar 及以下)宜接成型;低压电容器组应接成型。2. 变压器台数和容量及类型的选择2.1 主变台数的确定 (1)应满足用电负荷对可靠性的要求。在有一.二级负荷的变电所中,选择两台主变压器,当在经济,技
7、术上比较合理时,主变压器也可多余两台,一般不超过四台;(2)对季节性负荷或昼夜负荷变化比较大的宜采用经济运行方式的变电所,技术经济合理时可选择两台主变压器;(3)三级负荷一般选择一台主变压器,负荷较大时也可选择两台主变压器。2.2 变压器容量的确定2.2.1 装单台变压器时,其额定容量 应能满足全部用电设备的计算负荷 ,考虑负荷SN SC发展应应留有一定的容量裕度,并考虑变压器的经济运行,即(1.15-1.4) = 901.14-1097kvarNC2.2.2 装有两台变压器时,其中任意一台主变压器容量 应同时满足下列两个条件。N(1)任一台主变压器单独运行时,应满足总计算负荷的 60%-70
8、%的要求,即=(0.6-0.7) =470.2-548.5KVarSNC(2)任一台主变压器单独运行时,应能满足全部一二级负荷 的要求,即SIC)( =412KVar, 412KVarNIC)(IC)(N2.3 根据工厂的负荷情况和电源情况,工厂变电所的主变压器考虑有下列两种可供选择的方案:A,装一台变压器时,应选变压器额定容量为 =1000KVA,型号为 S9-1000/10,为NT满足工厂一、二级负荷要求,可采用高压联络线由邻近取得备用电源。已知与本厂有电气联系的架空线路总长为 60Km,电缆线路总长为 25Km。B,装设两台变压器,有上述计算可以得出 =500KVA,型号为 S9-100
9、0/10,为满SNT足工厂一、二级负荷要求,可采用高压联络线由邻近取得备用电源。已知与本厂有电气联系的架空线路总长为 60Km,电缆线路总长为 25Km。2.4 电费制度按本厂与供电部门达成的协议,在厂变电所高压侧设计量柜,按两部电费制度交纳电费。每月基本电费按变压器容量计为 100 元/kVA, 动力费为 2.20 元/kW.h,照明费为 1.50 元/kW.h。工厂最大负荷时的功率因数不得低于 0.90。此外根据所装的变压器容量一次性向供电部门交纳供电贴费为 1800 元/kVA. 。经比较两个方案的经济型差不多,但是考虑到运行的可靠性,此次设计选用第二种方案2.3 变压器型号的确定主变采
10、用双绕组三相变压器, 我国 110kV 及以上电压,变压器绕组都采用 Y0 连接;35kV 亦采用 Y 连接,其中性点多通过消弧线圈接地。35kV 及以下电压,变压器绕组都采用连接。因此,10KV 和 0.38KV 侧均采用连接。根据上述的讨论选用 10kV 铜线双绕组电力变压器,该变压器的型号为 S9-800/10.具体技术数据如下表:表 4.1 变压器技术参数型号 S9-500/10.额定容量(kVA) 500高压 10.5额定电压(kV)低压 0.4空载 0.96损耗(KW)短路 5.1短路电压(%) 4空载电流(%) 1.03. 变电所主接线方案设计3.1 电气主接线的概述及要求发电厂
11、和变电所中的一次设备、按一定要求和顺序连接成的电路,称为电气主接线,也成主电路。它把各电源送来的电能汇集起来,并分给各用户。它表明各种一次设备的数量和作用,设备间的连接方式,以及与电力系统的连接情况。所以电气主接线是电力系统接线组成中的一个重要组成部分。主接线的确定,对电力系统得安全、稳定、灵活、经济运行以及变电所电气设备的选择、配电装置的布置、继电保护和控制方法的拟定将会长生直接的影响。3.2 主接线设计供配电系统变电所常用的主接线基本形式有线路变压器组接线,单母线接线,双母线接线和桥式接线四种类型。3.2.1 主接线的比较单母线接线图10kv 侧采用单母线接线,简单容易操作,0.4kv 侧
12、采用单母线接线,接线简单,但是可靠性较差。单母线分段接线图10kv 侧采用单母线接线,简单容易操作,0.4kv 侧采用单母线分段接线,接线灵活可靠当低压侧母线发生故障时不至于全部停电。因此,通过比较选方案二比较合适。4 短路电流的计算4.11 短路的种类对称短路:三相短路:三相导体间的短路 不对称短路:两相短路:任意两相导体间的短路两相接地短路:不接地系统中,任意两相发生单相接地而产生的短路 单相短路:任一相经大地与中性点或与中线发生的短路 4.1.2 短路的原因(1)电力系统中电器设备载流导体的绝缘损坏。造成绝缘损坏的原因主要有设备绝缘自然老化,操作过电压,雷电过电压,绝缘受到机械损伤等。(
13、2)运行人员不遵守操作规程,如带负荷拉、合隔离开关,检修后忘拆除地线合闸。(3)鸟兽跨越在裸露导体上。4.1.3 短路的危害(1). 短路产生很大的热量,导体温度升高,将绝缘损坏。(2). 短路产生巨大的电动力,使电气设备受到机械损坏。(3). 短路使系统电压降低,电流升高,电器设备正常工 作受到破坏。(4). 短路造成停电,给国民经济带来损失,给人民生活带来不便。(5). 严重的短路将电力系统运行的稳定性,使同步发电机失步。(6). 不对称短路故障将产生零序电流,零序磁通,这个不平衡磁场,对通信线路和弱电设备产生严重的电磁干扰。41.4. 短路电流计算的目的(1). 正确地选择和校验各种电器
14、设备,以保证系统设备在系统短路时不被损坏。(2). 计算和整定保护短路的继电保护装置(3). 选择限制短路电流的电器设备4.2 短路电流计算的方法和条件4.2.1 短路电流计算方法电力系统供电的工业企业内部发生短路时,由于工业企业内所装置的元件,其容量比较小,而其阻抗较系统阻抗大得多,当这些元件遇到短路情况时,系统母线上的电压变动很小,可以认为电压维持不变,即系统容量为无穷大。所谓无限容量系统是指容量为无限大的电力系统,在该系统中,当发生短路时,母线电业维持不变,短路电流的周期分量不衰减。当然,容量所以们在这里进行短路电流计算方法,以无穷大容量电力系统供电作为前提计算的,其步骤如下:1 对各等
15、值网络进行化简,求出计算电抗;2 求出短路电流的标么值;3 归算到各电压等级求出有名值。4.2.2 短路电流计算条件1 短路电流实用计算中,采用以下假设条件和原则:(1)正常工作时,三相系统对称运行;(2)所有电源的电动势相位角相同;(3)系统中的同步和异步电机均为理想电机,不考虑电机磁饱和、磁滞、涡流及导体集肤效应等影响,转子结构完全对称,定子三相绕组空间位置相差 120 度电气角度;(4)电力系统中的各元件的磁路不饱和,即带铁芯的电气设备电抗值不随电流大小发生变化;(5)电力系统中所有电源都在额定负荷下运行,其中 50%负荷接在高压母线上,50%负荷接在系统侧;(6)同步电机都具有自动调整
16、励磁装置(包括强行励磁) ;(7)短路发生在短路电流为最大值的瞬间;(8)不考虑短路点的电弧阻抗和变压器的励磁电流;(9)除计算短路电流的衰减时间常数和低压网络的短路电流外,元件的都略去不计;(10)元件的计算参数均取为额定值,不考虑参数的误差和调整范围;(11)输电线路的电容略去不计;(12)用概率统计法制定短路电流运算曲线。2 接线方式计算短路电流时所用的接线方式,应是可能发生最大短路电流的正常接线方式,而不能用仅在切换过程中可能并联运行的接线方式。3 计算容量应按本工程设计的规划容量计算,并考虑电力系统的远景发展规划。4 短路点的种类一般按三相短路计算,若发电机的两相短路时,中性点有接地
17、系统的以及自耦变压器的回路中发生单相(或两相)接地短路较三相短路情况严重时,则应按严重情况的时候进行计算。5 短路点的选择短路点 a:设在一次侧母线。短路点 b:设在二次侧母线。4.3 短路电流的计算4.3.1 10kv 侧短路电流计算A 点短路时,系统短路容量很大,可以看做无穷大系统电源系统。取基准容量 =100MVA, =10.5KV,查表可知每千米电阻值 R=0.17,电抗 X=0.356,SdUd1可得线路总阻抗 = =3.95Z2)10*356.(2)0*7.(已知电力系统出口断路器的断流容量 =500MVA,Soc所以 =100MVA/500MVA=0.2X*1架空线路标幺值 =
18、* =3.58X2ZdUs21变压器标幺值 = = * =8*34%0KSNdab10.23584a 点三相短路时的相关计算总电抗标幺值 =0.2+3.58=3.78XK*1A 点所在电压级的基准电流= =5.50KAId1USd13A 点短路电流各量= =0.265K*1X三相短路周期分量有效值= =1.46KAIK1d*1冲击短路电流=2.55 =3.71KAish1.K1三相短路容量= =100*0.265=26.5MVASK1Xd*B 点三相短路的相关计算总电抗标幺值=0.2+3.58+8/8=7.78XK*2B 点所在电压级的基准电流= =144.33KAId2USd23短路电流各量
19、= =0.129K*2X1三相短路电流周期分量有效值= =18.55KAIK2d*2冲击短路电流=1.84 =34.132KAish2.K2三相短路容量= =100*0.192=19.2MVASK2Xd*三相短路电流计算结果表短路点冲击电流短路点额定电压平均工作电压短路电流周期分量有效值 有效值 最大值 短路容量短路点编号U /kVNU /kVavI /kA)3(KI /kA/kAshI/kAshiS /MVAKa 10 10.5 1.46 1.46 3.71 26.5b 0.38 0.4 18.55 18.55 34.132 19.25 变电所一次设备的选择及校验电气设备选择的技术条件选择的
20、高压电器,应能在长期工作条件下和发生过电压、过电流的情况下保持正常运行。1 长期工作条件(1)电压选用的电器允许最高工作电压 Umax 不得低于该回路的最高运行电压 Ug,即UmaxUg(2)电流选用的电器额定电流 Ie 不得低于所在回路在各种可能运行方式下的持续工作电流Ig,即 Ie Ig由于变压器短时过载能力很大,双回路出线的工作电流变化幅度也较大,故其计算工作电流应根据实际需要确定。高压电器没有明确的过载能力,所以在选择其额定电流时,应满足各种可能运行方式下回路持续工作电流的要求。(3)机械荷载所选电器端子的允许荷载,应大于电器引线在正常运行和短路时的最大作用力。2 短路稳定条件(1)校
21、验的一般原则 电器在选定后应按最大可能通过的短路电流进行动、热稳定校验。校验的短路电流一般取三相短路时的短路电流,若发电机出口的两相短路,或中性点直接接地系统及自耦变压器等回路中的单相、两相接地短路较三相严重时,应按严重情况校验。 用熔断器保护的电器可不验算热稳定。当熔断器保护的电压互感器回路,可不验算动、热稳定。(2)短路的热稳定条件(7-1)tIimat2)3(2式中 在计算时间 t 秒内,短路电流的热效应(kA *S) ;kQsI t 秒内设备允许通过的热稳定电流有效值(kA ) ;t设备允许通过的热稳定电流时间( s) 。(3)短路的动稳定条件(7-2)dfshiI (7-3) sf式
22、中 短路冲击电流峰值(kA ) ;shiI 短路全电流有效值( kA) ;s电器允许的极限通过电流峰值(kA ) ;dfi电器允许的极限通过电流有效值(kA ) 。fI3 绝缘水平在工作电压和过电压的作用下,电器的内、外绝缘应保证必要的可靠性。电器的绝缘水平,应按电网中出现的各种过电压和保护设备相应的保护水平来确定。当所选电器的绝缘水平低于国家规定的标准数值时,应通过绝缘配合计算,选用适当的过电压保护设备。环境条件按交流高压电器在长期工作时的发热 (GB763-74 )的规定,普通高压电器在环境最高温度为+4 0 时,允许按额定电流长期工作。当电器安装点的C环境温度高于+40 (但不高于+60 )时,每增高 1 ,建议额定电流减少C1.8%;当低于+40 时,每降低 1 ,建议额定电流增加 0.5%,但总的增加值不得超过额定电流的 20%。普通高压电器一般可在环境最低温度为-30 时正常运行。在高寒地区,应选择能适应环境温度为-40 的高寒电器。在年最高温度超过 40 ,而长期处于低湿度的干热地区,应选用型号带“TA”字样的