细胞生物学知识点(最终版).doc

上传人:11****ws 文档编号:4066485 上传时间:2019-09-22 格式:DOC 页数:38 大小:1.80MB
下载 相关 举报
细胞生物学知识点(最终版).doc_第1页
第1页 / 共38页
细胞生物学知识点(最终版).doc_第2页
第2页 / 共38页
细胞生物学知识点(最终版).doc_第3页
第3页 / 共38页
细胞生物学知识点(最终版).doc_第4页
第4页 / 共38页
细胞生物学知识点(最终版).doc_第5页
第5页 / 共38页
点击查看更多>>
资源描述

1、11细胞生物学知识点绪论1、细胞生物学研究的内容和现状1、细胞生物学是现代生命科学的重要基础学科什么是细胞生物学?细胞生物学是研究细胞基本生命活动规律的科学,它是在不同层次(显微、亚显微与分子水平)上以研究细胞结构与功能、细胞增殖、分化、衰老与凋亡、细胞信号传递、真核细胞基因表达与调控、细胞起源与进化等为主要内容。核心问题是将遗传与发育在细胞水平上结合起来。二、细胞生物学的主要研究内容 1、细胞核、染色体以及基因表达的研究 2、生物膜与细胞器的研究 3、细胞骨架体系的研究 4、细胞增殖及其调控 5、细胞分化及其调控 6、细胞的衰老与凋亡 7、细胞的起源与进化 8、细胞工程三、细胞生物学的发展趋

2、势从分子水平细胞水平,相互渗透交融 从细胞结构功能研究为主细胞重大生命活动为主 分析综合 功能基因组学研究是细胞生物学研究的基础与归宿 (应用) 由基因治疗细胞治疗 四、当前细胞生物学研究的重点领域染色体 DNA 与蛋白质相互作用关系 细胞增殖、分化、衰老及凋亡的调控及其相互关系细胞信号转导五、最近几年诺贝尔奖与细胞生物学(2000-2010 )2000:神经系统中的信号传递2001:控制细胞周期的关键物质2002: 细胞凋亡调节机制2003:细胞膜水通道及离子通道结构和机理2004:泛素调节的蛋白质降解系统2005:幽门螺旋杆菌2006: RNAi2007:基因敲除小鼠2008:绿色荧光蛋白

3、2009:端粒和端粒酶保护染色体的机理2010:试管受精技术2001 年,美国人 Leland Hartwell、英国人 Paul Nurse、Timothy Hunt 因对细胞周期调控机理的研究而获诺贝尔生理医学奖。2002 年,英国人悉尼布雷诺尔、美国人罗伯特霍维茨和英国人约翰苏尔斯顿,因在器官发育的遗传调控和细胞程序性死亡方面的研究获诺贝尔诺贝尔生理学或医学奖。222003 年,美国科学家彼得阿格雷和罗德里克麦金农,分别因对细胞膜水通道,离子通道结构和机理研究而获诺贝尔化学奖。 2004 年,美国人 Richard Axel 和 Linda B. Buck 获诺贝尔生理与医学奖,他们发现

4、气味受体和嗅觉系统的组成。2005 年 Barry J. Marshall 和 J. Robin Warren 获诺贝尔生理与医学奖,他们发现幽门螺杆菌及其在胃炎和胃溃疡方面的作用。2006 年美国人 Andrew Z. Fire 和 Craig C. Mello 因对 RNA 干扰的研究而获诺贝尔生理与医学奖。2009 年美国人 Elizabeth Blackburn、Carol Greider、 Jack Szostak 获诺贝尔医学和生理学奖,他们发现了端粒和端粒酶保护染色体的机理。年度诺贝尔生理学或医学奖在瑞典首都斯德哥尔摩揭晓。被誉为“试管婴儿之父”的英国科学家罗伯特爱德华兹 (Ro

5、bert G. Edwards),因“在试管受精技术方面的发展”而被授予该奖项。第二节 细胞学与细胞生物学发展简史细胞的发现 细胞学说的建立其意义 细胞生物学的研究内容分三个层次:1)显微水平,光学显微镜下可见的结构。2)超微水平,电子显微镜下可见的结构。3)分子水平,细胞结构的分子组成,及其在生命活动中的作用。细胞生物学经历了四个主要发展阶段:1)1665-1830s,细胞发现,显微生物学。2)1830s-1930s,细胞学说,Cytology 诞生3)1930s-1970s,电镜技术应用, Cytology 发展为细胞生物学。4)1970s 以来,分子细胞生物学时代。一、细胞的发现显微镜之

6、于生物学,犹如望远镜之于天文学,细胞生物学的变革无不和显微技术的改进息息相关。1590 年 J. 和 Z. Janssen 父子制作第一台复式显微镜,放大倍数不超过 10 倍。1665 年英国人 Robert Hooke 出版显微图谱 。观察了软木,并首次用 cells 来描述“细胞”1680 年荷兰学者 A. van Leuwenhoek 当选为英国皇家学会会员。他观察过植物、原生动物、水、鲑鱼的红细胞、牙垢中的细菌、唾液、血液、精液等等。1830s 消色差显微镜出现,人们才对细胞的结构和功能有了新的认识。1831 年 R. Brown 在兰科植物表皮细胞内发现了细胞核。1836 年 GG.

7、 Valentin 在动物神经细胞中发现了细胞核与核仁。这些工作对于细胞学说的诞生具有重要意义。 2、细胞学说的建立及其意义1838 年 Schleiden 发表“植物发生论” ,认为无论怎样复杂的植物都由细胞构成。但他以free-cell formation 理论来解释细胞形成。Schwann 提出了“细胞学说” (Cell Theory) ;1939 年发表了“关于动植物结构和生长一致性的显微研究” 。33Schwann 提出:有机体是由细胞构成的;细胞是构成有机体的基本单位。但他也采用了的 Schleiden 细胞形成理论。1855 德国人 R. Virchow 提出“一切细胞来源于细胞

8、” (omnis cellula e cellula)的著名论断;进一步完善了细胞学说。细胞学说是 19 世纪的重大发现之一,其基本内容有三条:1.认为细胞是有机体,一切动植物都是由细胞发育而来,并由细胞和细胞产物所构成;2.每个细胞作为一个相对独立的单位,既有它“自己的”生命,又对与其它细胞共同组成的整体的生命有所助益;3. 新的细胞可以通过老的细胞繁殖产生。三、 细胞学发展的经典时期19 世纪 30 年代至 20 世纪初,细胞学得到了蓬勃的发展。其研究方法主要是显微镜下细胞形态的描述。研究的主要特点是应用生物固定和染色技术,在光学显微镜下观察细胞的形态和细胞的分裂活动。原生质理论的提出、细

9、胞分裂活动的研究以及重要细胞器的发现等,构成了细胞学发展的经典时期。四、实验细胞学与细胞学的分支及其发展从 20 世纪初到中叶,为实验细胞学的发展时期。这一时期细胞学研究的特点是由对细胞形态结构的观察,深入到对其生理功能、生物化学、遗传发育机理的研究。1932 年德国人 E. Ruska 和 M. Knoll 发明透射电镜,人类视野进入超微领域 。1939 年 Siemens 公司生产商品电镜。1940-50s 用电镜观察了各类细胞超微结构。并结合超速离心、电泳、无细胞体系等分析技术研究这些结构的功能。Cytology 发展为 Cell Biology。五、细胞生物学学科的形成和发展从 20

10、世纪 60 年代起,细胞学发展成为细胞生物学。细胞生物学是随着分子生物学的发展而兴起的。1869 年瑞士人 F. Miescher 从脓细胞中分离出核酸,但未引起重视。1941 年 Beatle 和 Tatum 提出了“一个基因一个酶”的理论。1944 年 O. Avery 等通过细菌转化试验,1952 年 M. Chase 等通过噬菌体标记感染实验肯定了核酸与遗传的关系。1952 年 RE. Franklin 拍摄到清晰的 DNA 晶体的 X-衍射照片。1953 年她认为 DNA 是一种对称结构,可能是螺旋。 1953 年,JD. Watson 和 FHC. Crick 提出 DNA 双螺旋

11、模型。与 Wilkins 分享 1962 年诺贝尔生理学与医学奖 。1958 年 Crick 提出分子遗传的“中心法则” 。1961-1964 年 Nirenberg 等破译遗传密码。1972 年 DA. Jackson,RH. Symons 和 P. Berg 创建 DNA 体外重组。1973 年 SN. Cohen 和 HW. Boyer 将外源基因拼接在质粒中,并在大肠杆菌中表达。一系列技术和理论的提出,使细胞生物学与分子生物学的结合越来越紧密。 20 世纪 80 年代以来,细胞生物学的主要发展方向是细胞的分子生物学,即在分子水平上探索细胞的基本生命规律,把细胞看成是物质、能量、信息过程

12、的结合,并在分子水平上深入探索其生命活动的规律,深刻性与综合性是细胞生物学进一步发展的特点。1983 年,KB. Mullis 发明 PCR 仪,于 1993 年获诺贝尔化学奖。1990 年,美国国会正式批准的“人类基因组计划” (Human Genome Project) 。 我国于 1993 年加入该计划,承担其中 1%的任务,即人类 3 号染色体短臂上约 30Mb 的测序任务。2000 年 6 月 27 日科学家公布完成人类基因组草图。442001 年 2 月 12 日联合公布人类基因组图谱及分析结果。初步分析表明,人类基因组由31.647 108bp 组成,共有 3 万4 万个基因。同

13、年,美国国立卫生研究院给一名患有先天性重度联合免疫缺陷病的 4 岁女孩实施了首例基因治疗。这种疾病因腺苷脱氨酶(ADA)基因变异引起。1996 年 7 月 5 日,世界上第一只克隆羊“多利”在英国苏格兰卢斯林研究所的试验基地诞生。目前细胞生物学研究的基本特点和趋势可归纳如下:细胞结构功能 细胞生命活动。细胞中单一基因与蛋白 基因组与蛋白质组及其在细胞生命活动中的协同作用。细胞信号转导途径 信号调控网络。体外研究 体内研究。静态已经 活细胞的动态研究。研究为主 计算生物学更多地介入并与之结合。细胞生物学与生物学其他学科的渗透 与数、理、化及纳米科学等多学科的交叉。总的特点是从静态的分析到活细胞的

14、动态综合,这在很大程度也反映了生命科学研究的趋势。第 2 章 细胞的统一性与多样性第 1 节 细胞的基本概念一、细胞是生命活动的基本单位二、细胞的基本共性一、细胞是生命活动的基本单位1、一切有机体都由细胞构成,细胞是构成有机体的基本单位.2、细胞具有独立的、有序的自控代谢体系,细胞是代谢 与功能的基本单位3、细胞是有机体生长与发育的基础4、细胞是遗传的基本单位。细胞具有遗传的全能性5、没有细胞就没有完整的生命6. 细胞概念的一些新思考 (1)细胞是多层次非线性的复杂结构体系细胞具有高度复杂性和组织性 (2)细胞是物质(结构) 、能量与信息过程精巧结合的综合体1、细胞完成各种化学反应;2、细胞需

15、要和利用能量;3、细胞参与大量机械活动;4、细胞对刺激作出反应; (3)细胞是高度有序的,具有自组装能力与自组织体系。 1、细胞能进行自我调控; 2、繁殖和传留后代; 二、细胞的基本共性1. 所有的细胞都有相似的化学组成2. 脂-蛋白体系的生物膜所有的细胞表面均有由磷脂双分子层与镶嵌蛋白质构成的生物膜,即细胞膜。3. DNA-RNA 的遗传装置55所有的细胞都有两种核酸,即 DNA-与 RNA,作为遗传信息复制与转录的载体。4. 蛋白质合成的机器核糖体一切细胞均存在合成蛋白质的基本结构体核糖体。5. 一分为二的分裂方式。原核细胞与真核细胞基本特征的比较原核细胞与真核细胞的遗传结构装置和基因表达

16、的比较 特 征 原 核 细 胞 真 核 细 胞 细 胞 膜 核 膜 染 色 体 核 仁 线 粒 体 内 质 网 高 尔 基 体 溶 酶 体 核 糖 体 光 合 作 用 结构 核 外 DNA 细 胞 壁 细 胞 骨 架 细 胞 增 殖 ( 分 裂 ) 方式 有 ( 多 功 能 性 ) 无 由 一 个 环 状 DNA 分 子 构 成 的 单个 染 色 体 , DNA不 与 或 很 少 与 蛋白 质 结 合 无 无 无 无 无 70S( 包 括 50S与 30S的 大 小 亚单 位 ) 蓝 藻 含 有 叶 绿 素 a的 膜 层 结 构 ,细 菌 具 有 菌 色 素 细 菌 具 有 裸 露 的 质 粒

17、 DNA 主 要 成 分 是 氨 基 糖 与 壁 酸 无 无 丝 分 裂 ( 直 接 分 裂 ) 有 有 2 个 染 色 体 以 上 , 染 色 体 由 线 状 DNA 与 蛋 白质 组 成 有 有 有 有 有 80S( 包 括 60S与 40S的 大 小 亚 单 位 ) 植 物 叶 绿 体 具 有 叶 绿 素 a与 b 线 粒 体 DNA, 叶 绿 体 DNA 动 物 细 胞 无 细 胞 壁 , 植 物 细 胞 壁 的 主 要 成 分为 纤 维 素 与 果 胶 有 以 有 丝 分 裂 ( 间 接 分 裂 ) 为 主 特 征 原 核 细 胞 真 核 细 胞 DNA量 ( 信 息 量 ) DNA

18、分 子 数 DNA分 子 结 构 基 因 组 数 基 因 数 大 量 “多 余 ”的 “重 复 ”的 DNA序 列 基 因 中 插 入 内 含 子 DNA与 组 蛋 白 结 合 DNA与 组 蛋 白 以 核 小 体及 各 级 高 级 结 构 构 成 染 色 质与 染 色 体 DNA复 制 的 明 显 周 期 性 基 因 表 达 的 调 控 转 录 与 翻 译 的 时 空 关 系 转 录 后 与 翻 译 后 大 分 子的 加 工 与 修 饰 细 胞 复 制 与 分 裂 ( DNA传 递 与 分 配 ) 少 1 环 状 1n 几 千 不 与 或 与 少 量 类 组 蛋 白 结合 主 要 以 操 纵

19、 子 方 式 转 录 与 翻 译 同 时 同 地进 行 无 丝 分 裂 多 2个 以 上 线 状 2n, 多 n 大 于 几 万 , 十 万 十 十 与 5种 组 蛋 白 结 合 十 十 复 杂 性 , 多 层 次 性 核 内 转 录 , 细 胞 质 内 翻译 严 格 的 阶 段 性 与 区 域性 十 有 丝 分 裂 , 减 数 分 裂 66细胞的体积受什么因素控制?可以从 3 个方面进行探讨:1、不论细胞体积相差多大,各种细胞核的大小相差不大。2、细胞的表面积限制了细胞的大小(1)细胞体积相对细胞表面积呈反比关系,体积越大,表面积就越小(2)细胞体积比表面积增大速度快3、细胞内物质的交流运输

20、与细胞体积有关,细胞内的物质从一端向另一端运输或扩散是有时间与空间关系的。4. 细胞形态结构与功能的关系细胞的形态有球形、星形、扁平、立方形、长柱形、梭形等。细胞形态结构与功能的相关性与一致性是很多细胞的共同特点,在分化程度较高的细胞中更为明显,这是生物漫长进化过程的产物。5. 植物细胞和动物细胞的比较第四章 细胞质膜Plasm membrane细胞质膜(plasm membrane)曾称细胞膜(cell membrane),是指围绕在细胞最外层,由脂质(lipid)和蛋白质 (protein)组成的生物膜。质膜不仅是细胞结构的边界,使细胞具有一个相对稳定的内环境,同时在细胞与环境之间的物质运

21、输、能量转换及信息传递过程中也起着重要作用。细胞内的膜与细胞质膜统称为生物膜(biomembrane) 。它是围绕细胞的保护层,一层薄而透明的油层,允许食物,氧气和水份进入细胞,废物排出细胞。第一节 细胞质膜的结构模型生物膜的结构模型膜脂膜蛋白一、生物膜的结构模型77单位膜模型(Unit membrane model)用超薄切片技术获得了清晰的细胞膜照片,显示暗-明- 暗三层结构,它由厚约 3.5nm 的双层脂分子和内外表面各厚约 2nm 的蛋白质构成,总厚约 7.5nm。“生物膜的流动镶嵌模型”这种模型认为细胞膜是由流动的脂双分层子和嵌在其中的蛋白质构成的。该模型主要强调:1)膜的流动性,膜

22、蛋白和膜脂均可侧向运动;2)膜蛋白分布的不对称性,有的镶在膜表面 ,有的嵌入或横跨脂双分子层。K.Simons et al(1997): lipid rafts model(脂筏模型)生物膜结构的特征具有极性头部和非极性尾部的磷脂分子在水相中具有自发形成封闭的膜系统的性质。磷脂双分子层是组成生物膜的基本结构成分,尚未发现膜结构中起组织作用的蛋白; 蛋白分子以不同方式镶嵌在脂双层分子中或结合在其表面,膜蛋白是赋予生物膜功能的主要决定者;生物膜可看成是在双层脂分子中嵌有蛋白质的二维溶液。二、膜的化学组成Membrane Lipid(膜脂 )Phospholipids (phosphoglyceri

23、des,磷脂)Glycolipid (糖脂类)Cholesterol(胆固醇)Membrane Protein(膜蛋白)Integral proteins (膜内在蛋白)Channel Proteins (通道蛋白)Carrier Proteins (载体蛋白)Peripheral proteins(膜外周蛋白)Lipid anchored proteins(脂锚定蛋白)Membrane Carbohydrates (膜碳水化合物) 1.膜脂(Membrane Lipid ) :膜脂主要包括磷脂、糖脂和胆固醇三种类型磷脂( phospholipids ):膜脂的基本成分(50以上) 分为二类:

24、 甘油磷脂(phosphoglycerides )和鞘磷脂( sphingolipids) 主要特征:具有一个极性头部和两个非极性的尾部(心磷脂除外) ;脂肪酸碳链碳原子为偶数,大多数由 16,18 或 20 个组成;饱和脂肪酸(如软脂酸)及不饱和脂肪酸(如油酸) ; 糖脂(glycolipids) :糖脂普遍存在于原核和真核细胞的质膜上(5以下),神经细胞膜上糖脂含量较高;胆固醇(Cholesterol)和中性脂质:存在于真核细胞膜上,其含量不超过膜脂的 1/3。细菌质膜不含有胆固醇,但某些细菌的膜脂中含有甘油脂等中性脂。Features (特征):Found in animals , Sm

25、aller, Less amphipathic Functions(功能) :88维持膜的流动性,增加膜的稳定性如没有胆固醇,膜很容易分开The Nature of the Lipid 膜脂的基本性质是两性物质, 能够自我装配成双层结构或自我封闭成球状。膜脂的功能构成膜的基本骨架,去除膜脂,则使膜解体;是膜蛋白的溶剂,一些蛋白通过疏水端同膜脂作用,使蛋白镶嵌在膜上,得以执行特殊的功能;膜脂为某些膜蛋白(酶)维持构象、表现活性提供环境, 一般膜脂本身不参与反应(细菌的膜脂参与反应); 膜上有很多酶的活性依赖于膜脂的存在。有些膜蛋白只有在特异的磷脂头部基团存在时才有功能。2. 膜脂的运动方式Fou

26、r kinds of movement:沿膜平面的侧向运动(Lateral diffusion by exchanging places):基本运动方式,其扩散系数为10-8cm2/s;脂分子围绕轴心的自旋运动(Rotation about its long axis );脂分子尾部的摆动(Wave); 双层脂分子之间的翻转运动( Transverse diffusion, or “flip-flop” from one monolayer to the other):发生频率还不到脂分子侧向交换频率的 1010。但在内质网膜上,新合成的磷脂分子翻转运动发生频率很高。3.Liposome 脂质

27、体脂质体是根据磷脂分子可在水相中形成稳定的脂双层膜的趋势而制备的人工膜。脂质体的应用:(1)研究膜脂与膜蛋白及其生物学性质;(2)脂质体中裹入 DNA 可用于基因转移;(3)在临床治疗中,脂质体作为药物或酶等载体small hydrophilic (亲水性)hydroxyl group (羟基)toward the membrane surface 亲水的羟基对着膜表面the remainder of the molecule embedded in the lipid bilayer其余的部分埋在脂双层间99(二) 膜蛋白(Membrane Protein)The “Mosaic” Part

28、 of the ModelFunctions: carry out most membrane functions Transporting particular nutrients 运输营养物质Metabolites 代谢 Receptors 受体 Enzymes 酶Ions across the lipid bilayer 离子通过脂双层Anchor the membrane to macromolecules 将膜与大分子物质连接Content: about 50% of the mass of most plasma membranes in animals 在动物细胞中占 50%含量

29、Classification: according their relationship to lipid bilayer 按照它们和脂双层的关系划分1. 膜蛋白的类型根据膜蛋白分离的难易程度及其与脂分子的进化方式分为: 外周膜蛋白(peripheral membrane protein );分布于细胞膜的内外表面,主要分布在细胞膜的内表面,约占膜蛋白总量的2030。为水溶性蛋白,靠离子键或其它弱键与膜表面的蛋白质分子或脂分子结合易分离整合膜蛋白(integral protein) 又称膜内在蛋白.(1) 全部或部分插入细胞膜内,直接与脂双层的疏水区域相互作用。 (2)两亲性(Amphipat

30、hic)亲水性( Hydrophilic): forming functional domains outside of the bilayer疏水性( Hydrophobic): anchoring them in the bilayer (3)水不溶性蛋白,与膜结合紧密,需用去垢剂使膜崩解后才可分离。脂锚定蛋白(lipid anchored protein)又称脂连接蛋白(lipid-linked proteins), 同脂的结合有两种方式:一种方式是通过一个糖分子间接同脂双层中的脂结合;一种是蛋白质直接与脂双层中的脂结合。2. 内在膜蛋白与膜脂结合的方式(1)膜蛋白的跨膜结构域与脂双层分

31、子的疏水核心的相互作用。(2)跨膜结构域两端携带正电荷的氨基酸残基与磷脂分子带负电的极性头形成离子键,或带负电的氨基酸残基通过 Ca2+、Mg2+等阳离子与带负电的磷脂极性头相互作用。 (3)某些膜蛋白在细胞质基质一侧的半胱氨酸残基上共价结合脂肪酸分子,插入脂双层之间,进一步加强膜蛋白与脂双层的结合力,还有少数蛋白与糖脂共价结合。3. 去垢剂(detergents)去垢剂是一端亲水一端疏水的两性小分子,是分离与研究膜蛋白的常用试剂。离子型去垢剂(the ionic detergent SDS)和非离子型去垢剂( the nonionic detergent Triton X-100) 膜蛋白的

32、研究方法用去垢剂分离小的跨膜蛋白, 是膜蛋白研究的重要手段:当它们与膜蛋白作用时,其疏水端与膜蛋白的疏水区域相结合,极性端指向水中,形成溶于水的去垢剂-膜蛋白复合物,从而使膜蛋白在水中溶解、变性、沉淀。 当去除去垢剂并加入磷脂后,可使膜蛋白复性并恢复功能。 有人用这种方法研究了膜中 Na+-K+-ATP 酶的功能1010钠钾 ATP 酶功能的研究图(3) 膜碳水化合物(Membrane Carbohydrates)与脂类和蛋白质共价结合在脂双层的外表面糖蛋白(Glycoproteins): have short , branched carbohydrates for interactions

33、 with other cells and structures outside the cell. 糖脂(Glycolipids):have larger carbohydrate chains that may be cell-to-cell recognition sites. Functions与其它细胞和结构相互作用细胞与细胞之间的识别位点稳定细胞膜结构识别激素和分子第二节 生物膜基本特征与功能(The properties and functions of membranes)膜的流动性膜的不对称性细胞质膜的基本功能1、膜的流动性(Fluidity)1. 膜脂的流动性(Membrane lipids fluidity)影响膜流动性的因素(The factors affect on membrane fluidity):1)脂肪酸链长度和不饱和程度 膜脂的流动性主要由脂分子本身的性质决定的,脂肪酸链越短,不饱和程度越高,膜脂的流动性越大。2) 温度(Temperature):

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 实用文档资料库 > 策划方案

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。