1、 1 / 17 燕山地区 20152016 学年度第一学期初四年级期末考试 一、选择题(本题共 30 分,每小题 3 分) 下面各题均有四个选项,其中只有一个是符合题意的 1二次函数 的最小值是( ) 2(1)yx A B C D2 12 2下面四个图形分别是绿色食品、节水、节能和回收标志,在这四个标志中,是中心对称图形的是( ) A B C D 3下面的几何体中,主视图为三角形的是( ) A B C D 4若 ,相似比为 ,则 与 的面积比为( ) BCDEF 1:3AB EF A B C D1:9 1:21:3 5有一盒水彩笔除了颜色外无其他差别,其中各种颜色的数量统计如图所 示小腾在无法
2、看到盒中水彩笔颜色的情形下随意抽出一支小腾抽到蓝 色水彩笔的概率为( ) A B 1015 C D 3320 6如图, 是 的直径, , 是圆上两点, ,则 等于( ) ABOCD50AOC D A B C D2530450 7如图,在 中, , , ,则 的值为( ) Rt 93Bcos A B C D 3545443 8已知一块蓄电池的电压为定值,以此蓄电池为电源时,电流 与电阻 之间的函数关系如图,IAR 则电流 关于电阻 的函数解析式为( ) IR 0 235 支支4326支 () 支6134支 2 / 17 A B C D 4IR8IR32IR32IR 9某地下车库出口处安装了“两段
3、式栏杆”,点 是栏杆转动的支点,点 是栏杆两段的联结点当车辆AE 经过时,栏杆 最多只能升起到如图所示的位置,其中 , , ,AEFBCFB 135AE 米,那么适合该地下车库的车辆限高标志牌为(栏杆宽度忽略不计参考数据: )1.3B 2.4 ( ) A B C D 10一个寻宝游戏的寻宝通道如图 所示,四边形 为矩形,且 ,为记录寻宝者的行1ABDAB 12 进路线,在 的中点 处放置了一台定位仪器,设寻宝者行进的时间为 ,寻宝者与定位仪器之间的Mx 距离为 ,若寻宝者匀速行进,且表示 与 的函数关系的图象大致如图 所示,则寻宝者的行进路线yyx 可能为( ) A B C DODCAOCOA
4、 二、填空题(本题共 18 分,每小题 3 分) 11点 关于原点的对称点的坐标为_(3,4)P 12关于 的一元二次方程 有一个根为 ,写出一组满足条件的实数 , 的值:x2015axb1xab _, _ab 13某农科院在相同条件下做了某种玉米种子发芽率的试验,结果如下: 种子总数 1048035709140 发芽种子数 93571691643826 发芽的频率 .5.2 则该玉米种子发芽的概率估计值为_( 结果精确到 ) 第 7 题图 第 8 题图第 6 题图 ABC O84R/I/AABCDO Oy x 图 2 FABCE ABOM 图 1 3 / 17 14 九章算术是中国传统数学最
5、重要的著作,奠定了中国传统数学的基本框架其中卷第九勾股,主 要讲述了以测量问题为中心的直角三角形三边互求的关系其中记载:“今有邑,东西七里,南北九里, 各中开门,出东门一十五里有木,问:出南门几何步而见木?” 译文:“今有一座长方形小城,东西向城墙长 里,南北向城墙长 里,各城墙正中均开一城门走出东门79 里处有棵大树,问走出南门多少步恰好能望见这棵树?”(注: 里 步)15 130 你的计算结果是:出南门_步而见木 15老师在课堂上出了一个问题:若点 , 和 都在反比例函数 的图象上,1(2,)Ay2(,)B3(4,)Cy 8yx 比较 , , 的大小1y23 小明是这样思考的:当 时,反比
6、例函数的图象是 随 的增大而增大的,并且 ,所以0kx214 123 你认为小明的思考_(填“正确”和“ 不正确”) ,理由是_ 16阅读下面材料: 在数学课上,老师提出如下问题: 小芸的作法如下: 老师说:“小芸的作法正确 ” 请回答:小芸的作法中判断 是直角的依据是_ACB 三、解答题(本题共 72 分,第 1726 题,每小题 5 分,第 27 题 7 分,第 28 题 8 分,第 29 题 7 分) 解答应写出文字说明,演算步骤或证明过程 17计算: 2cos45tan30si6 尺规作图:作 ,使其斜边 ,一条直角边 RtABC ABcBCa 已知: 取 ,作 的垂直平分线交 于点
7、;ABcABO 以点 为圆心, 长为半径画圆;O 以点 为圆心, 长为半径画弧,与 交于点 ;aC 连接 , C 则 即为所求RtAB ac OACB 南 门 东门 4 / 17 18解方程: 2310x 19如图, 的半径为 , 为弦, ,交 于点 ,交 于点 , ,求弦 的O5ABOCABDOC2DAB 长 20如图, 中, 于点 ,且 ABC D ( ) 求证: 1 ( ) 求 的大小2 21如图,在边长为 的小正方形组成的网格中, 的三个顶点均在格点上将 绕点 顺时针1ABC ABC 旋转 得到 90ABC ( ) 在网格中画出 11 ( ) 计算点 旋转到 的过程中所经过的路径长 (
8、结果保留 ) 2 22已知二次函数 28yx ( ) 用配方法将 化成 的形式1 2()yaxhk ( ) 求出该二次函数的图象与 轴的交点 , 的坐标( 在 的左侧) 2 ABAB ( ) 将该二次函数的图象沿 轴向左平移 个单位,再沿 轴向上平移 个单位,请直接写出得到的新3 y3 图象的函数表达式 23如图,一次函数 的图象与反比例函数 的图象交于 , 两点,且点 的坐标为2yx (0)kyxABA (1,)m ( ) 求反比例函数 的表达式 (0)k ( ) 若 是 轴上一点,且满足 的面积为 ,求点 的坐标2PyABP 6P ABCDO 第 19 题 图 BACD 第 20 题图 B
9、CA 第 21 题图 y xOAB 第 23 题图 5 / 17 24北京联合张家口成功申办 年冬奥会后,滑雪运动已成为人们喜爱的娱乐健身项目如图是某滑雪20 场为初学者练习用的斜坡示意图,出于安全因素考虑,决定将斜坡的倾角由 降为 ,已知原斜坡4530 坡面 长为 米,点 , , 在同一水平地面上,求改善后的斜坡坡角向前推进的距ABDBC 离 (结果保留整数参考数据: , , ,)D21.43.762. 25如图,已知 是以 为直径的 的外接圆,过点作 的切线交 的延长线于点 ,交OABABC OCD 的延长线于点 BCE ( )求证: 1DC ( )若 , ,求 的长2Asin 13 26
10、有这样一个问题:探究函数 的图象与性质 1yx 小东根据学习函数的经验,对函数 的图象与性质进行了探究 下面是小东的探究过程,请补充完整: ( ) 函数 的自变量 的取值范围是_ 1 1yx x ( ) 下表是 与 的几组对应值2 ECBOAD 第 25 题图 第 24 题图 ADBC4530 6 / 17 x 3210G(0)ykxnABG2345y 417321347m21 求 的值;m ( ) 如下图,在平面直角坐标系 中,描出了以上表中各对对应值为坐标的点,根据描出的点,画3xOy 出该函数的图象; ( ) 进一步探究发现,该函数图象在第一象限内的最低点的坐标是 ,结合函数的图象,写出
11、该4 (2,3) 函数的其它性质(一条即可): 27在平面直角坐标系 中,抛物线 经过点 , ,与 轴交于xOy 2yxbc(1,)At(3,)Bty 点 一次函数 的图象经过抛物线的顶点 (0,1)CnD ( ) 求抛物线的表达式; ( ) 求一次函数 的表达式;2yx ( ) 将直线 : 绕其与 轴的交点 旋转,使当 时,直线 总位于抛物线的下方,3lmyE1x l 请结合函数图象,求 的取值范围 -213-4-4 655 63-4312432Oxy -213-4-43-4312432Oxy 7 / 17 28如图 , 和 都是等腰直角三角形, ,将 绕点 逆时针旋转一个角度1ABC DE
12、 90CDE C ,使点 , , 在同一直线上,连接 , 09 AB ( ) 依题意补全图 2 求证: ,且 B 作 ,垂足为 ,请用等式表示出线段 , , 之间的数量关系MM ( ) 如图 ,正方形 边长为 ,若点 满足 ,且 ,请直接写出点 到23ACD5P1D90PA 的距离BP 29在平面直角坐标系 中, 的半径为 ,点 是与圆心不重合的点,给出如下定义:若点 为射xOyCrP P 线 上一点,满足 ,则称点 为点 关于 的反演点右图为点 及其关于 的CP2PrCC 反演点 的示意图 ( ) 如图 ,当 的半径为 时,分别求出点 , ,11(1,0)M(,2)N 关于 的反演点 , ,
13、 的坐标; ,2TONT ( ) 如图 ,已知点 , ,以 为直径的 与 轴交于点 , (点 位于点 下方),(,4)A(3,0)BAGyCD 为 的中点ECD 若点 , 关于 的反演点分别为 , ,求 的大小;GOE 若点 在 上,且 ,设直线 与 轴的交点为 ,点 关于 的反演点为PPCPxQG ,请直接写出线段 的长度Q Q 图 1 CA BDE 图 2 CA B 图 3 DCBA 211yxOMTN 图 1 GCDBAOxy 备用图 yxOABDCGE 图 2 xyPCP 8 / 17 9 / 17 燕山地区 20152016 学年度第一学期末考试数学试卷答案 一、选择题(本题共 30
14、 分,每小题 3 分) 题目 1 2 3 4 5 6 7 8 9 10 答案 D D B A C A B C B A 二、填空题(本题共 18 分,每小题 3 分) 11 (3,4) 12满足 即可,如 , 2015aba2015ab 13 0.9 14 15 15不正确;理由: 的图象在其每一象限内, 随 的增大而增大; 的图象是分段的,是间 8yxyx8yx 断的;因为 , , ,所以 14232y231 16直径所对的圆周角是直角 三、解答题(本题共 72 分,第 17-26 题,每小题 5 分,第 27 题 7 分,第 28 题 7 分,第 29 题 8 分) 17解:原式 2312
15、18解: , , ,a3b1c 24()4()3 1 xa312 原方程的解是 , 1 32x23x 19解: 是 的半径, 于点 ,OCOCABD 2 ADB , ,5 3 在 中, , ,RtO 5A3OD ,224A= 8B 20证明:( ) 中, 于点 ,1C B ,90D ACD ;A 10 / 17 ( )解: ,2ACDB 在 中, , 90 , ,B 即 AC 21解:( )画出 ,如图11 ( )由图可知 是直角三角形, , ,2 4AC3B 所以 5B 点 旋转到 的过程中所经过的路径是一段弧,1 且它的圆心角为 ,半径为 905 1 242A 所以点 旋转到 的过程中所经
16、过的路径长为 B1 52 22解:( )1 28yx42 8x ( ) 令 ,则 20y20 ,4 解方程,得 , 1x24 该二次函数的图象与 轴的交点坐标为 , x(0,)A(4,0)B ( ) 3 25yx 23解:( )点 的坐标为 ,在直线 上,1A(1,)m2yx ,23m 点 的坐标为 ,代入反比例函数 中,得(,) kx ,1k 反比例函数的表达式为 3yx ( ) 直线 与 轴交于点 ,且 ,22yx(0,2)C(3,1)B 1ABPCBPSPS ,6 3 B1C1BCA PCyxOAB 11 / 17 是 轴上一点,Py 点 的坐标为 或 (0,5)(,1) 24解:由题意
17、, 在 中, , , 米,RtABC 945ABC20 米,sin20sin1 又 中, , ,tD 3D 米,ta 1t36 米02104BC 即改善后的斜坡坡角向前推进的距离约为 米 25解:( )证明: 为 的直径, ,1ABO90ACB 90 为 的切线,D , ,C BA , ,OOCB 而 ,DE ( ) 解: , ,221 在 中, , ,RtABC Osin3 ,Dsin3 ,2 AA , ,CED , , DE 2A2 26解:( ) 1x ( )当 时, ,24 134y 3m ECBOAD-2134-4 6556343243Oxy 12 / 17 ( )该函数的图象如右图
18、所示3 ( ) 该函数的其它性质:4 当 时, 随 的增大而增大;0xyx 当 时, 随 的增大而减小;1 当 时, 随 的增大而增大2 函数的图象不经过第二象限 函数的图象与 轴无交点,图象由两部分组成x 函数的图象关于点 成中心对称(1,) (写出一条即可) 27解:( ) 抛物线 经过点 , ,1 2yxbc(1,)At(3,)Bt 抛物线 的对称轴为 ,x , 12 解得 ,b 抛物线 与 轴交于点 , 2yxbcy(0,1)C ;1c 抛物线的表达式为 21x ( ) ,2 2()yx 抛物线的顶点 的坐标为 D, 把点 的坐标代入一次函数 中,得nyx ,1n ,3 一次函数的表达
19、式为 3yx ( )由题意,直线 : 与 轴交于点 ,lm(0,3)E 且 , ,1,2A(,)D 当直线 经过点 时, ,l 5 当直线 经过点 时, ,1 结合函数的图象可知, 的取值范围为 51m 28解:( ) 依题意补全图 如图;12 证明: ,90ACBDE ElyxODA FEDBAC 13 / 17 ,ACBDCEB 即 又 , , , , A 设 与 交于点 ,则 ,AEBCFBEFC ,180 ,D ,9 即 D 线段 , , 之间的数量关系: CMAEB2AEBCM ( ) 点 到 的距离为 或 2P12 29解:( ) , , ;1(,0)N (,)T(,1) ( )
20、解法一: , ,22GEr 2OGr ,O 即 又 ,E , G O 为弦 的中点, 为圆心,CD 于点 ,E 即 ,90 G 解法二:易得 , , ,(2,)(,2)E5r , EO , ,2r 2 , G 54 在射线 上, 在射线 上,EGO , , (,2)3(,) ,O 54 , 22=GE 90 14 / 17 线段 的长度为 或 GQ 51372054 15 / 17 燕山地区 20152016 学年度第一学期初四年级期末考试 一、选择题(本题共 30 分,每小题 3 分) 1 【答案】D 【解析】二次函数 开口向上,其顶点坐标为 ,所以最小值是 21yx(1,2)2 2 【答案
21、】A 【解析】 是轴对称图形,故本选项正确; 不是轴对称图形,故本选项错误; 不是轴对称图BC 形,故本选项错误; 不是轴对称图形,故本选项错误D 3 【答案】C 【解析】圆柱体的主视图只有矩形或圆,圆柱体的主视图不可能是三角形故选 C 4 【答案】B 【解析】 , 与 的相似比为 , 故选 BACDEFVABC DEF 1:3:1:9ABCDEFS 5 【答案】C 【解析】共有小球 (个) ,其中蓝色小球 个,小腾抽到蓝色水彩笔的概率为2346206 ,故选 C 63201 6 【答案】A 【解析】 是 的直径, ,故选项为 ABO 15022DAOC 7 【答案】B 【解析】 中, , ,
22、 , ,故选 BRtAC 905AB34B 4cos5C 8 【答案】C 【解析】设用电阻 表示电流 的函数解析式为 ,过 , 故答案为 CI IkR(,8)832kR 9 【答案】B 【解析】解:如图,过点 作 的平行线 ,过点 作 于 ,ABCAGEHAG 则 ,90EHGF ,135A ,45E ,4 在 中, , , 米, 90AH1.3E (米) , 1.sin392EHA 米,1.3B 米0.9 16 / 17 故选:B 10 【答案】C 【解析】 、若 ,则两最高点间弧线部分的最低点 的值恰好等于起点 值的两倍,AODCByy 故本选项错误 、若 , , 均为最低点则起点距离 最
23、近,不符合图 中起点的位置,故本选项错B y2 误 、若 ,则 为最低点, , 为最高点,符合题意,故本选项正确CDC 、若 ,则到达 两点时 最大,到达 点时, 最小,到达 点时 最小,故本DOAyOyAy 选项错误; 故选 B 二、填空题(本题共 18 分,每小题 3 分) 11 【答案】 25(1)x 【解析】点 的坐标为 ,P(,4) 点 关于原点对称的点的坐标为: (3,) 故答案为: (3,4) 12 【答案】 60 【解析】把 代入 得 满足 即可,如 ,1x2015abx2015ab2015aba2015a b 13 【答案】 0.9 【解析】观察表格,发现大量重复试验发芽的频
24、率逐渐稳定在 左右,0.9 该玉米种子发芽的概率为 ,0.9 故答案为: . 14 【答案】 315 【解析】如图 , , 经过 点,EGABFHDGA , , , ,90FE , 17 / 17 EGAFH 里, 里, 里,9B7D15EG 里, 里,3.54. , 1. 解得: 里 .0F1.5301 故答案为: 3 15 【答案】 (开放性试题,合理即可)4 【解析】反比例函数 中 , 8yx0k 此函数图象的两个分支分别位于二四象限,并且在每一象限内, 随 的增大而增大yx , , 三点都在反比例函数 的图象上,不正确;理由: 的图1(2,)Ay2(,)B3(4,)Cy 88yx 象在其每一象限内, 随 的增大而增大; 的图象是分段的,是间断的;因为 ,x yx 14 , ,所以 28y3231y 16 【答案】直径所对的圆周角是直角 【解析】直径所对的圆周角是直角 故答案为:直径所对的圆周角是直角