高数公式大全.doc

上传人:hw****26 文档编号:4199393 上传时间:2019-10-03 格式:DOC 页数:20 大小:249.21KB
下载 相关 举报
高数公式大全.doc_第1页
第1页 / 共20页
高数公式大全.doc_第2页
第2页 / 共20页
高数公式大全.doc_第3页
第3页 / 共20页
高数公式大全.doc_第4页
第4页 / 共20页
高数公式大全.doc_第5页
第5页 / 共20页
点击查看更多>>
资源描述

1、高等代数 兼听则明,偏信则暗 姓名:飞哥 班级:数应 2 班 第 1 页 共 20 页 高等数学公式 平方关系: sin2()+cos2()=1 tan2()+1=sec2() cot2()+1=csc2() 积的关系: sin=tan*cos cos=cot*sin tan=sin*sec cot=cos*csc sec=tan*csc csc=sec*cot 倒数关系: tancot=1 sincsc=1 cossec=1 直角三角形 ABC 中 , 角 A 的正弦值就等于角 A 的对边比斜边, 余弦等于角 A 的邻边比斜边 正切等于对边比邻边, 三角函数恒等变形公式 两角和与差的三角函数

2、: cos(+)=coscos-sinsin cos(-)=coscos+sinsin sin()=sincoscossin tan(+)=(tan+tan)/(1-tantan) tan(-)=(tan-tan)/(1+tantan) 三角和的三角函数: sin(+)=sincoscos+cossincos+coscossin-sinsinsin cos(+)=coscoscos-cossinsin-sincossin-sinsincos tan(+)=(tan+tan+tan-tantantan)/(1-tantan-tantan-tantan) 辅助角公式: Asin+Bcos=(A2+

3、B2)(1/2)sin(+t),其中 sint=B/(A2+B2)(1/2) cost=A/(A2+B2)(1/2) 第 2 页 共 20 页 tant=B/A Asin+Bcos=(A2+B2)(1/2)cos(-t), tant=A/B 倍角公式: 三倍角公式: sin(2)=2sincos=2/(tan+cot) sin(3)=3sin-4sin3() cos(2)=cos2()-sin2()=2cos2()-1=1-2sin2() cos(3)=4cos3()-3cos tan(2)=2tan/1-tan2() 半角公式: sin(/2)=(1-cos)/2) cos(/2)=(1+c

4、os)/2) tan(/2)=(1-cos)/(1+cos)=sin/(1+cos)=(1-cos)/sin 降幂公式 sin2()=(1-cos(2)/2=versin(2)/2 cos2()=(1+cos(2)/2=covers(2)/2 tan2()=(1-cos(2)/(1+cos(2) 万能公式: sin=2tan(/2)/1+tan2(/2) cos=1-tan2(/2)/1+tan2(/2) tan=2tan(/2)/1-tan2(/2) 积化和差公式: sincos=(1/2)sin(+)+sin(-) cossin=(1/2)sin(+)-sin(-) coscos=(1/2

5、)cos(+)+cos(-) sinsin=-(1/2)cos(+)-cos(-) 和差化积公式: sin+sin=2sin(+)/2cos(-)/2 sin-sin=2cos(+)/2sin(-)/2 cos+cos=2cos(+)/2cos(-)/2 cos-cos=-2sin(+)/2sin(-)/2 推导公式 tan+cot=2/sin2 tan-cot=-2cot2 1+cos2=2cos2 1-cos2=2sin2 1+sin=(sin/2+cos/2)2 其他: sin+sin(+2/n)+sin(+2*2/n)+sin(+2*3/n)+sin+2*(n-1)/n=0 cos+c

6、os(+2/n)+cos(+2*2/n)+cos(+2*3/n)+cos+2*(n-1)/n=0 以及 第 3 页 共 20 页 sin2()+sin2(-2/3)+sin2(+2/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0 三角函数的角度换算 编辑本段 公式一: 设 为任意角,终边相同的角的同一三角函数的值相等: sin(2k )sin cos(2k )cos tan( 2k )tan cot( 2k )cot 公式二: 设 为任意角,+ 的三角函数值与 的三角函数值之间的关系: sin( )sin cos()cos tan( )tan cot(

7、 )cot 公式三: 任意角 与 - 的三角函数值之间的关系: sin()sin cos()cos tan( )tan cot( )cot 公式四: 利用公式二和公式三可以得到 - 与 的三角函数值之间的关系: sin( )sin cos()cos tan( )tan cot( )cot 公式五: 利用公式一和公式三可以得到 2- 与 的三角函数值之间的关系: sin(2 )sin cos(2 )cos tan( 2 )tan cot( 2 )cot 公式六: /2 及 3/2 与 的三角函数值之间的关系: sin(/2 )cos cos(/2 ) sin tan( /2 )cot 第 4 页

8、 共 20 页 cot( /2 )tan sin(/2 )cos cos(/2 )sin tan( /2 )cot cot( /2 )tan sin(3/2)cos cos(3/2 )sin tan( 3/2)cot cot( 3/2 )tan sin(3/2)cos cos(3/2 )sin tan( 3/2)cot cot( 3/2 )tan (以上 kZ) 部分高等内容 编辑本段 高等代数中三角函数的指数表示( 由泰勒级数易得): sinx=e(ix)-e(-ix)/(2i) cosx=e(ix)+e(-ix)/2 tanx=e(ix)-e(-ix)/ie(ix)+ie(-ix) 泰勒展

9、开有无穷级数,ez=exp(z) 1 z/1!z2/2 !z3/3!z4/4!zn/n! 此时三角函数定义域已推广至整个复数集。 三角函数作为微分方程的解: 对于微分方程组 y=-y;y=y,有通解 Q,可证明 Q=Asinx+Bcosx,因此也可以从此出发定义三角函数。 补充:由相应的指数表示我们可以定义一种类似的函数双曲函数,其拥有很多与三角函数的类似的性质,二者相映成趣。 特殊三角函数值 a 0 30 45 60 90 sina 0 1/2 2/2 3/2 1 cosa 1 3/2 2/2 1/2 0 tana 0 3/3 1 3 None cota None 3 1 3/3 0 导数公

10、式: axactgxxctgln1)(logs)(es)(2 221)(1)(arcosinxarctgxx 第 5 页 共 20 页 基本积分表: 三角函数的有理式积分: 222 11cos1sin udxtguxux , , , 一些初等函数: 两个重要极限:CaxaxdshcxadCxctgxctgddxx)ln(lnsseesineco 2222CaxadxaxadxCrctgtxxdctgCrcsinl21n1slsenilcos22Caxxadxa axaxdaxIndInnn rcsin22l)(221cossi2 22 22020arthch eshxxxxln1)(l:2:)

11、双 曲 正 切双 曲 余 弦双 曲 正 弦 .5904718.)1(limsin0xx 第 6 页 共 20 页 三角函数公式: 诱导公式: 函数 角 A sin cos tan cot - -sin cos -tan -cot 90- cos sin cot tan 90+ cos -sin -cot -tan 180- sin -cos -tan -cot 180+ -sin -cos tan cot 270- -cos -sin cot tan 270+ -cos sin -cot -tan 360- -sin cos -tan -cot 360+ sin cos tan cot 和差角

12、公式: 和差化积公式: 倍角公式: 半角公式: cos1insico12cos1insico12 scsssin tgtg 正弦定理: RCBbAa2iinsi 2sini2cosco2sin2sincoictgtctg1)(1sincos)cos(ini 33134ctgt22 222contt 第 7 页 共 20 页 余弦定理: Cabccos22 反三角函数性质: arctgxrctgxxx2rrsin 高阶导数公式莱布尼兹(Leibniz)公式: )()()2()1()(0 )()( !)1()! nknnnnnkk uvuknvuvuCv 中值定理与导数应用: 拉 格 朗 日 中

13、值 定 理 。时 , 柯 西 中 值 定 理 就 是当柯 西 中 值 定 理 :拉 格 朗 日 中 值 定 理 :xFfabfab)(F)()( ) 曲率: .1;0.)1(limMsM:.,13202aKayds MsKtgydxs 的 圆 :半 径 为直 线 :点 的 曲 率 : 弧 长 。:化 量 ;点 , 切 线 斜 率 的 倾 角 变点 到从平 均 曲 率 : 其 中弧 微 分 公 式 : 定积分的近似计算: ba nnnba nnba n yyyyxff yyxf )(4)(2)(3)( 21)()( 13124011010 抛 物 线 法 :梯 形 法 :矩 形 法 : 定积分应

14、用相关公式: 第 8 页 共 20 页 babadtfxfykrmFApsW)(1),221均 方 根 :函 数 的 平 均 值 : 为 引 力 系 数引 力 :水 压 力 :功 : 空间解析几何和向量代数: 。代 表 平 行 六 面 体 的 体 积 为 锐 角 时 ,向 量 的 混 合 积 : 例 : 线 速 度 :两 向 量 之 间 的 夹 角 : 是 一 个 数 量 轴 的 夹 角 。与是向 量 在 轴 上 的 投 影 :点 的 距 离 :空 间 ,cos)( sin,cos,Pr)(Pr ,cos)()()(2 2222121 21212121 bacbaccba rwvkjic ba

15、bababjjj uABABzyxMzyxzyxzyx zyxzyx zyxzyxuu 第 9 页 共 20 页 ( 马 鞍 面 )双 叶 双 曲 面 :单 叶 双 曲 面 : 、 双 曲 面 : 同 号 )(、 抛 物 面 :、 椭 球 面 :二 次 曲 面 : 参 数 方 程 :其 中空 间 直 线 的 方 程 : 面 的 距 离 :平 面 外 任 意 一 点 到 该 平、 截 距 世 方 程 :、 一 般 方 程 : , 其 中、 点 法 式 :平 面 的 方 程 : 13,2211 ;,1302 ),(,)()()(12222 0000 2200 0000 czbyaxqpzyxcba

16、 ptznymxpnmstpznymxCBADzyxdczbyaxDCBA zyxMCBAnz 多元函数微分法及应用 z yzx yxxyx yxFzyxF dFdddyvdvyudxvxzuxzfz tvtdttvu xffzdzududyxzd , , 隐 函 数 , , 隐 函 数隐 函 数 的 求 导 公 式 : 时 ,当 :多 元 复 合 函 数 的 求 导 法全 微 分 的 近 似 计 算 : 全 微 分 : 0),( )()(,),(),()(, ),(),(2 第 10 页 共 20 页 ),(1),(1,)(,)( ,)(0),(yuGFJyvvyGFJyuxxxx GFvu

17、FvJvuyxF vu 隐 函 数 方 程 组 : 微分法在几何上的应用: ),(),(),(3 0)(,(,2 )(),()(1,0),( ,0),( 0)()()( (,)( 000 0000 000 0000 zyxFzyxzyxF zyxFzyxzyxzyxnMzyxF GFGFTGzyxFztytxt tyxzytzytx zzyxzy 、 过 此 点 的 法 线 方 程 : :、 过 此 点 的 切 平 面 方 程、 过 此 点 的 法 向 量 : , 则 :上 一 点曲 面 则 切 向 量若 空 间 曲 线 方 程 为 :处 的 法 平 面 方 程 :在 点 处 的 切 线 方

18、程 :在 点空 间 曲 线 方向导数与梯度: 上 的 投 影 。在是单 位 向 量 。 方 向 上 的, 为, 其 中:它 与 方 向 导 数 的 关 系 是 的 梯 度 :在 一 点函 数 的 转 角 。轴 到 方 向为其 中 的 方 向 导 数 为 :沿 任 一 方 向在 一 点函 数 lyxflf ljieyxflf jyfxyxpyxfzl yffllfz),(grad snco),(grad,),(),( sinco),(),( 多元函数的极值及其求法: 第 11 页 共 20 页 不 确 定时 值时 , 无 极为 极 小 值为 极 大 值时 ,则 : , 令 :设 ,0),( ),

19、(,),(,),(0),(),(202 0000BACyxA CyxfByxfAffyxf xy 重积分及其应用: DzDyDx zyxDyDx DyxDD adfaFayxdfFayxdfF FMzo IyI dxydyxzAyxfzrdrfdf 232232232 2222 )(,)(,)(, )0( ),(,),(,),(1),()sin,co(),( , , , 其 中 :的 引 力 :轴 上 质 点平 面 ) 对平 面 薄 片 ( 位 于 轴 对 于轴对 于平 面 薄 片 的 转 动 惯 量 : 平 面 薄 片 的 重 心 :的 面 积曲 面 柱面坐标和球面坐标: dvyxIdvzx

20、IdvzyI MMyxM drrFddrrFdyzf vrxzrfzF dzrFdxyzfryx zyx )()()( 1,1,1 sin),(sin),(),( siicosin),si,(),( ,),(,(,sinco 222 20),022 2, , 转 动 惯 量 : , 其 中 重 心 : , 球 面 坐 标 :其 中 : 柱 面 坐 标 : 曲线积分: 第 12 页 共 20 页 )()()(),(),( ,)(, 22 tyxdtttfdsyxf tytxLfL 特 殊 情 况 : 则 : 的 参 数 方 程 为 :上 连 续 ,在设 长 的 曲 线 积 分 ) :第 一 类

21、曲 线 积 分 ( 对 弧 。, 通 常 设 的 全 微 分 , 其 中 :才 是 二 元 函 数时 ,在 :二 元 函 数 的 全 微 分 求 积 注 意 方 向 相 反 !减 去 对 此 奇 点 的 积 分 , , 应。 注 意 奇 点 , 如, 且内 具 有 一 阶 连 续 偏 导 数在,、 是 一 个 单 连 通 区 域 ;、 无 关 的 条 件 :平 面 上 曲 线 积 分 与 路 径 的 面 积 :时 , 得 到, 即 :当 格 林 公 式 :格 林 公 式 : 的 方 向 角 。上 积 分 起 止 点 处 切 向 量 分 别 为和, 其 中系 :两 类 曲 线 积 分 之 间 的

22、 关 , 则 :的 参 数 方 程 为设 标 的 曲 线 积 分 ) :第 二 类 曲 线 积 分 ( 对 坐 0),(),(),( ),( )0,(),(),(21 212, )()( )cos(),),(),(),( )( 0),),0 yxdyxQyPyxu uQyPxQGyxPG ydxdxyADyPxQy QPQdyxdL dPttttPdyxQyPt x DLDL LLL 曲面积分: 第 13 页 共 20 页 dsRQPRdxyQzPdyxzdzxyQdyzPxzxRdxyzR dxyzRdzxyQdyP dfszxfzxyzy xyDDD )cosco(),(,),( , ),

23、(),( ),(),( ),(,1,),( 22 系 :两 类 曲 面 积 分 之 间 的 关 号 。, 取 曲 面 的 右 侧 时 取 正 号 ;, 取 曲 面 的 前 侧 时 取 正 号 ;, 取 曲 面 的 上 侧 时 取 正 , 其 中 :对 坐 标 的 曲 面 积 分 :对 面 积 的 曲 面 积 分 : 高斯公式: 第 14 页 共 20 页 dsAvsRQPdsAsnzRyQx dsRQPRdxyzPdyvzyxPnn i )cocos( .,0iv,di )coscos()(成 :因 此 , 高 斯 公 式 又 可 写 ,通 量 : 则 为 消 失的 流 体 质 量 , 若即

24、: 单 位 体 积 内 所 产 生散 度 : 通 量 与 散 度 :高 斯 公 式 的 物 理 意 义 斯托克斯公式曲线积分与曲面积分的关系: dstARzQdyPxARQPzyx yPxQRzPyRzQPxdxyzdy RdzQyPxRPzQyR 的 环 流 量 :沿 有 向 闭 曲 线向 量 场旋 度 : , , 关 的 条 件 :空 间 曲 线 积 分 与 路 径 无上 式 左 端 又 可 写 成 : kjirot coscos)()()( 常数项级数: 是 发 散 的调 和 级 数 :等 差 数 列 :等 比 数 列 : nqqnn13212)(112 级数审敛法: 第 15 页 共

25、20 页 散 。存 在 , 则 收 敛 ; 否 则 发、 定 义 法 : 时 , 不 确 定时 , 级 数 发 散时 , 级 数 收 敛, 则设 : 、 比 值 审 敛 法 : 时 , 不 确 定时 , 级 数 发 散时 , 级 数 收 敛, 则设 : 别 法 ) :根 植 审 敛 法 ( 柯 西 判、 正 项 级 数 的 审 敛 法 nnnnsusUulim;31li21lim1211 。的 绝 对 值其 余 项, 那 么 级 数 收 敛 且 其 和如 果 交 错 级 数 满 足 莱 布 尼 兹 定 理 :的 审 敛 法或交 错 级 数 1113243 ,0li )0,( nnn n urr

26、usuu 绝对收敛与条件收敛: 时 收 敛 时 发 散 级 数 : 收 敛 ; 级 数 : 收 敛 ;发 散 , 而调 和 级 数 : 为 条 件 收 敛 级 数 。收 敛 , 则 称发 散 , 而如 果 收 敛 级 数 ;肯 定 收 敛 , 且 称 为 绝 对收 敛 , 则如 果 为 任 意 实 数 ;, 其 中1)1(1)()2()1(232pnpnnun 幂级数: 第 16 页 共 20 页 01)3(lim )3(111 1121032 RaaRRxxaxaxx nnnn 时 ,时 ,时 ,的 系 数 , 则是, 其 中求 收 敛 半 径 的 方 法 : 设 称 为 收 敛 半 径 。

27、, 其 中时 不 定时 发 散时 收 敛, 使在数 轴 上 都 收 敛 , 则 必 存 收 敛 , 也 不 是 在 全, 如 果 它 不 是 仅 在 原 点 对 于 级 数 时 , 发 散时 , 收 敛 于 函数展开成幂级数: nnn nnxfxffxfx RffR xfxfxxf !)0(!2)0()(0)(0 lim,()!1 )(!)(!2)()10( 00)(2000时 即 为 麦 克 劳 林 公 式 : 充 要 条 件 是 :可 以 展 开 成 泰 勒 级 数 的余 项 :函 数 展 开 成 泰 勒 级 数 : 一些函数展开成幂级数: )()!12()!53sin )1(1)(1)(

28、 2 xnxxx nmmm 欧拉公式: 2sincosincoixiixiix exe 或 三角级数: 。上 的 积 分 在任 意 两 个 不 同 项 的 乘 积正 交 性 : 。,其 中 , 0 ,cos,in2cos,incs,i1 )in()i()( 100 xxxtAbaAxbattf nnn 傅立叶级数: 第 17 页 共 20 页 是 偶 函 数 ,余 弦 级 数 : 是 奇 函 数 ,正 弦 级 数 : ( 相 减 ) ( 相 加 ) 其 中 , 周 期 nxaxfnxdfab bffnxdfbfanxbxfnn nnnnnn cos2)(2,10cos)(20 i3,i1243

29、16246142853)3,1(si)(12,0co)si(2)( 000222210 周期为 的周期函数的傅立叶 级数:l2 llnlnnnndxlfblfa llblxxf )3,21(si)(1,0co)si()(10 其 中 , 周 期 微分方程的相关概念: 即 得 齐 次 方 程 通 解 。 ,代 替分 离 变 量 , 积 分 后 将, 则设 的 函 数 , 解 法 :, 即 写 成程 可 以 写 成齐 次 方 程 : 一 阶 微 分 方 称 为 隐 式 通 解 。 得 : 的 形 式 , 解 法 :为: 一 阶 微 分 方 程 可 以 化可 分 离 变 量 的 微 分 方 程 或

30、一 阶 微 分 方 程 : uxyudxudxuxdyxu xyyfyCxFGdxfg dxfgyQdyPyf )()(,)()()( )()(0,),( 一阶线性微分方程: 第 18 页 共 20 页 )1,0()(2 )0)( , )(1 )()(nyxQPdxy eCdxeQCxxyPdx dxPPd,、 贝 努 力 方 程 :时 , 为 非 齐 次 方 程 ,当 为 齐 次 方 程 ,时当、 一 阶 线 性 微 分 方 程 : 全微分方程: 通 解 。应 该 是 该 全 微 分 方 程 的 , 其 中 : 分 方 程 , 即 :中 左 端 是 某 函 数 的 全 微如 果 Cyxu y

31、xQuyxPyxdP),( ),(),(0),(,)( 二阶微分方程: 时 为 非 齐 次时 为 齐 次, 0)()()(2 xfyxQdPx 二阶常系数齐次线性微分方程及其解法: 212,)(2 ,(*)0)(1 ,0(*)r yrqpqyp式 的 两 个 根、 求 出 的 系 数 ;式 中的 系 数 及 常 数 项 恰 好 是, 其 中、 写 出 特 征 方 程 :求 解 步 骤 : 为 常 数 ;, 其 中 式 的 通 解 :出的 不 同 情 况 , 按 下 表 写、 根 据 (*),321r的 形 式, 21r (*)式的通解 两个不相等实根 )04(2qp xrxrecy21 两个相等实根 r1)(21 一对共轭复根 )(2241pqpirir, , )sinco2xeyx 二阶常系数非齐次线性微分方程 第 19 页 共 20 页 型为 常 数 ;型 , 为 常 数, sin)(cos)()(,xPxexf qpfqyplm

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 实用文档资料库 > 策划方案

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。