1、1 学 科 教 学 计 划 (2016-2017 学年度上期) 七 年级 2 班 学科:数学 执教教师: 本 期 教 材 简 析 (本期教材的知识结构、地位、教学目的、要求、重难点) 知识结构与地位: 第一章 有理数 本章主要内容是有理数的有关概念及其运算。 首先,从实例出发引入负数,接着引进关于有理数的一些概念,在此 基础上,介绍有理数的运算。 第二章 整式的加减 本章的主要内容是单项式、多项式、整 式的概念,合并同类项、去括号以及整式加减运算等。 第三章 一元一次方程 本章主要内容包括:一元一次方程及 其相关概念,一元一次方程的解法,利用一元一次方程分析与解决 实际问题。 第四章 图形认识
2、初步 这一章是义务教育第三学段“空间与 图形”领域的起始章,让学生欣赏丰富多彩的图形世界,看到更多 的立体图形与平面图形,初步了解立体图形与平面图形之间的关系, 并通过线段和角认识一些简单的图形,并能初步进行应用。 教学目标与要求: 1、基本技能:能够按照一定的程序与骤进行运算、作图或画图, 进行简单的推理。 2、逻辑思维能力:会观察、比较、分析、综合、抽象和概括; 会用归纳、演绎和类比进行推理;会准确地阐述自己的思想和观点, 2 形成良好的思维品质。 3、运算能力:不仅会根据法则、公式等正确地进行运算,而且 理解运算的算理,能够根据题目条件寻求合理、简捷的运算途径。 4、分析问题和解决问题的
3、能力:能够解决实际问题,是指解决 带有实际意义的和相关学科中的数学问题,以及解决生产和日常生 活中的实际问题。在解决实际问题中,把实际问题抽象成数学问题, 形成用数学的意识。 重难点: 重点:有理数的运算。以方程为工具分析问题、解决问题。如何结 合立体图形与平面图形的互相转化的学习,来发展空间观念以及一 些重要的概念、性质等。单项式、多项式、整式的概念,合并同类 项、去括号以及整式加减运算等 难点:有理数的加、减、乘、除运算,理解有理数的运算律,并 能运用运算律简化运算。能运用有理数的运算解决简单的问题。通 过探究实际问题与一元一次方程的关系,进一步体会利用一元一次 方程解决问题的基本过程,感
4、受数学的应用价值,提高分析问题、 解决问题的能力。对图形的表示方法,对几何语言的认识与运用。 能够分析实际问题中的数量关系,并用还有字母的式子表示出来 3 学 生 知 识 现 状 解 析 从总体上看,学生的数学成绩较差,在数学的思维上,学生正 处于形象思维向逻辑抽象思维的转变期;在学习习惯上,部分小学 的不良习惯要得到纠正,良好的习惯要得到巩固,如独立思考,认 真进行总结通过观察和了解,大部分学生对数学是很感兴趣的,但 仍有部分学生对数学严重丧失信心,谈数学而色变,因此要给这部 分学生树信心,鼓干劲;对于小学升入初中,学生有一个适应的过 程,刚开始起点宜低,讲解宜慢,使学生迅速适应初中生活 本
5、 期 改 进 教 学 、 提 高 教 学 质 量 的 措 施 1、认真钻研教材,积极捕捉课改信息,尽力倡导自主、合作、 探究学习,努力培养学生的学习兴趣和个性品质。 2、把握学生思想动态,及时与学生沟通,搞好师生关系。 3、充分利用课堂教学时间,帮助学生理解教学重难点,训练考 点、热点,强化记忆,形成能力,提高成绩。 4、改进教学方法,力求课堂的多样化、生活化和开放化,力争 有更多的师生互动、生生互动的机会。 5、精讲多练,在教学新知识的同时,注重旧知识的复习,使所 学知识系统化,条理化,让学生在练习、测试中巩固提高,减少遗 忘。 教 学 内 容 章、节(单元)课题 教参规 定 课时数 计划需
6、 要课时 数 起止周次 时 间 备 注 教 学 进 度 计 划 整数和负数 2 3 第一周 4 有理数 5 8 第二、三周 有理数的加减法 4 8 第三、四周 有理数的乘除法 7 9 第五、六周 有理数的乘方 4 6 第八周 整式 3 5 第九周 整式的加减 3 6 第十周 从算式到方程 2 3 第十一周 解一元一次方程 4 6 第十一、二 周 实际问题与一元一次方程 2 4 第十三周 几何图形 3 6 第十四周 直线、射线、线段 2 4 第十五周 角 3 6 第十六、七 周 5 进 度 第一章(单元)第 1 节 (课)1 课时 课型 新课 备课时间 2016 年 9 月 1 日 课题内容 1
7、.1.1 正数和负数(1) 授课时间 2016 年 9 月 2 日 教 学 目 标 1、整理前两个学段学过的整数、分数(包括小数)的知识,掌握正 数和负数的概念; 2、能区分两种不同意义的量,会用符号表示正数和负数; 3、体验数学发展的一个重要原因是生活实际的需要,激发学生学习 数学的兴趣。 重 点 难 点 重点:正确区分两种不同意义的量。 难点:两种相反意义的量 教 具 多媒体 教学课时及板书设计 旁批 设置情境引入课题: 上课开始时,教师应通过具体的例子,简要说明在前两个学 段我们已经学过的数,并由此请学生思考:生 活中仅有这些“以前学过的数”够用了吗?下面的例子 仅供参考 师:今天我们已
8、经是七年级的学生了,我是你们的数学老 师下面我先向你们做一下自我介绍,我的名字是 XX,身高 1.73 米,体重 58.5 千克,今年 40 岁我们的班级是七(13)班, 有 60 个同学,其中男同学有 22 个,占全班总人数的 37% 先回顾 小学里学过 的数的类型, 归纳出我们 已经学了整 数和分数, 然后,举一 些实际生活 中共有相反 6 问题 1:老师刚才的介绍中出现了几个数?分别是什么?你能 将这些数按以前学过的数的分类方法进行分类吗? 学生活动:思考,交流 师:以前学过的数,实际上主要有两大类,分别是整数和分 数(包括小数) 问题 2:在生活中,仅有整数和分数够用了吗 请同学们看书
9、(观察本节前面的几幅图中用到了什么数,让 学生感受引入负数的必要性)并思考讨论,然后进行交流。 (也可以出示气象预报中的气温图,地图中表示地形高低地 形图,工资卡中存取钱的记录页面等) 学生交流后,教师归纳:以前学过的数已经不够用了,有时候需 要一种前面带有“”的新数。 分析问题探究新知: 问题 3:前面带有“一”号的新数我们应怎样命名它呢?为 什么要引人负数呢?通常在日常生活中我们用正数和负数分别表 示怎样的量呢? 这些问题都必须要求学生理解 教师可以用多媒体出示这些问题,让学生带着这些问题看书 自学,然后师生交流 这阶段主要是让学生学会正数和负数的表示 强调:用正,负数表示实际问题中具有相
10、反意义的量,而相 反意义的量包含两个要素:一是它们的意义相反,如向东与向西, 意义的量, 说明为了表 示相反意义 的量,我们 需要引入负 数,这样做 强调了数学 的严 密性,但对 于学生来说, 更多 地感到 了数学的枯 燥乏味为了 既复习小学 里学过的数, 又能激发学 生的学习兴 趣,所以创 设如下的问 题情境,以 尽量贴近学 7 收人与支出;二是它们都是数量,而且是同类的量 举一反三思维拓展: 经过上面的讨论交流,学生对为什么要引人负数,对怎样用 正数和负数表示两种相反意义的量有了初步的理解,教师可以要 求学生举出实际生活中类似的例子,以加深对正数和负数概念的 理解,并开拓思维 问题 4:请
11、同学们举出用正数和负数表示的例子 问题 5:你是怎样理解“正整数” “负整数, , 正分数”和 “负分数”的呢?请举例说明 课堂练习: 教科书第 3 页练习 课堂小结: 围绕下面两点,以师生共同交流的方式进行: 1、0 由于实际问题中存在着相反意义的量,所以要引人负数, 这样数的范围就扩大了; 2、正数就是以前学过的 0 以外的数(或在其前面加“” ) , 负数就是在以前学过的 0 以外的数前面加“” 。 本课作业: 教科书第 5 页习题 1.1 第 1,2,4,5(第 3 题作为下节课 的思考题。 ) 生的实际 这个问 题能激发学 生探究的欲 望,学生自 己看书学习 是培养学生 自主学习的
12、重要途径, 都应予以重 视。 以上的 情境和实例 使学生体会 生活中处处 有数学,通 过实例,使 学生获取大 量的感性材 料,为正确 建立相反意 义的量奠定 8 基础。 课 后 心 得 密切联系生活实际,创设学习情境本课是有理数的第一节课 时引人负数是数的范围的一次重要扩充,学生头脑中关于数的结 构要做重大调整(其实是一次知识的顺应过程) ,而负数相对于以前 的数,对学生来说显得更抽象,因此,这个概念并不是一下就能建 立的为了接受这个新的数,就必须对原有的数的结构进行整理, 引人币的举例就是这个目的 负数的产生主要是因为原有的数不够用了(不能正确简洁地表 示数量) ,书本的例子 或图片中出现的
13、负数就是让学生去感受和体验这一点使学生接受 生活生产实际中确实 存在着两种相反意义的量是本课的教学难点,所以在教学中可以多 举几个这方面的例 子,并且所举的例子又应该符合学生的年龄和思维特点。当学生接 受了这个事实后,引入负数(为了区分这两种相反意义的量)就是 顺理成章的事了 这个教学设计突出了数学与实际生活的紧密联系,使学生体会 到数学的应用价值, 体现了学生自主学习、合作交流的教学理念,书本中的图片和例子 都是生活生产中常见 的事实,学生容易接受,所以应该让学生自己看书、学习,并且鼓 励学生讨论交流,教师作适当引导就可以了。 9 本期总第( 1、2 )课时 进 度 第一章(单元)第 1 节
14、 (课)2 课时 课型 新课 备课时间 课题内容 1.1.2 正数和负数(2) 授课时间 教 学 目 标 1、通过对数“零”的意义的探讨,进一步理解正数和负数的概念; 2、利用正负数正确表示相反意义的量(规定了指定方向变化的量) 3、进一步体验正负数在生产生活实际中的广泛应用,提高解决实 际问题的能力,激发学习数学的兴趣。 重 点 难 点 关 键 教学重点:深化对正负数概念的理解。 教学难点:正确理解和表示向指定方向变化的量。 教 具 多媒体 教学课时及板书设计 旁批 知识回顾与深化: 回顾:上一节课我们知道了在实际生产和生活中存在着两种 不同意义的量,为了区分这两种量,我们用正数表示其中一种
15、意 义的量,那么另一种意义的量就用负数来表示这就是说:数的 范围扩大了(数有正数和负数之分) 那么,有没有一种既不是正 “数 0 耽不是正 数,也不 是负数” 也应看作 是负数定 10 数又不是负数的数呢? 问题 1:有没有一种既不是正数又不是负数的数呢? 学生思考并讨论 (数 0 既不是正数又不是负数,是正数和负数的分 界,是基准这个道理学生并不容易理解,可视学生的讨论情况 作些启发和引导,下面的例子供参考) 例如:在温度的表示中,零上温度和零下温度是两种不同意 义的量,通常规定零上温度用正数来表示,零下温度用负数来表 示。那么某一天某地的最高温度是 零上 7,最低温度是零下 5时,就应该表
16、示为7 和5,这里7和5就分别称为正数和负数. 那么当温度是零度时,我们应该怎样表示呢?(表示为 0) , 它是正数还是负数呢?由于零度既不是零上温度也不是零下温度, 所以,0 既不是正数也不是负数 问题 2:引入负数后,数按照“两种相反意义的量”来分,可以分 成几类? 分析问题解决问题: 问题 3:教科书第 6 页例题 说明:这是一个用正负数描述向指定方向变化情况的例子, 通常向指定方向变化用正数表示;向指定方向的相反方向变化用 负数表示。这种描述在实际生活中有广泛的应用,应予以重视。 教学中,应让学生体验“增长”和“减少”是两种相反意义的量, 要求写出“体重的增长值”和“进出口额的增长率”
17、 ,就暗示着用 正数来表示增长的量。 归纳:在同一个问题中,分别用正数和负数表示的量具有相 反的意义(教科书第 6 页) 类似的例子很多,如: 水位上升3m,实际表示什么意思呢? 收人增加10%,实际表示什么意思呢? 等等。 可视教学中的实际情况进行补充 课堂练习: 教科书第 4 页练习 课堂小结: 义的一部 分在引 入 负数后,0 除了表示 一个也没 有以外, 还是正数 和负数的 分界了 解。的这 一层意义, 也有助于 对正负数 的理解; 且对数的 顺利扩张 和有理毅 概念的建 立都有帮 助。 所举 的例子, 要考虑学 生的可接 受性 “数 0 既不是正 数,也不 是负数” 应从相反 意义的
18、 1 这个角度 来说 明这个 问题只要 初步认识 即 可,不必 11 以问题的形式,要求学生思考交流: 1、引人负数后,你是怎样认识数 0 的,数 0 的意义有哪些变 化? 2、怎样用正负数表示具有相反意义的量? (用正数表示其中一种意义的量,另一种量用负数表示;特别 地,在用正负数表示向指定方向变化的量时,通常把向指定方向 变化的量规定为正数,而把向指定方向的相反方向变化的量规定 为负数 ) 本课作业: 必做题:教科书第 5 页习题 1.1 第 3,6,7,8 题 选做题:教师自行安排 深究 课 后 心 得 1、本课主要目的是加深对正负数概念的理解和用正负数表示实 际生产生活中的向指 定方向
19、变化的量。 2、 “数 0 既不是正数,也不是负数, (要从 0 不属于两种相反 意义的量中的任何一种上来理解)也应看作是负数定义的一部 分在引人负数后,除了表示一个也没有以外,还是正数和负数的 分界。了解 0 的这一层意义,也有助于对正负数的理解,且对数的 顺利扩张和有理数概念的建立都有帮助由于上节课的重点是建立 两种相反意义量的概念,考虑到学生的可接受性,所以作为知识的 回顾和深化而放到本课 3、教科书的例子是用正负数表示(向指定方向变化的)量的实 12 际应用,用这种方式描述的例子很多,要尽量使学生理解 4、本设计体现了学生自主学习、交流讨论的教学理念,教学中 要让学生体验数学知识在实际
20、中的合理应用,在体验中感悟和深化 知识通过实际例子的学习激发学生学习数学的兴趣 本期总第( 3、4 )课时 进 度 第一章(单元)第 2 节 (课)1 课时 课型 新课 备课时间 课题内 容 1.2.1 有理数 授课时间 教 学 目 标 1、掌握有理数的概念,会对有理数按照一定的标准进行分类,培养 分类能力; 2、了解分类的标准与分类结果的相关性,初步了解“集合”的含义; 3、体验分类是数学上的常用处理问题的方法。 重 点 难 点 关 键 教学重点:正确理解分类的标准和按照一定的标准进 行分类。 教学难点:正确理解有理数的概念。 教 具 多媒体 教学课时及板书设计 旁批 13 探索新知: 在前
21、两个学段,我们已经学习了很多不同类型的数,通过 上两节课的学习,又知道了现在的数包括了负数,现在请同学 们在草稿纸上任意写出 3 个数(同时请 3 个同学在黑板上写出) 问题 1:观察黑板上的 9 个数,并给它们进行分类 学生思考讨论和交流分类的情况学生可能只给出很粗略 的分类,如只分为“正数”和“负数”或“零”三类,此时, 教师应给予引导和鼓励例如:对于数 5,可这样问:5 和 5. 1 有相同的类型吗?5 可以表示 5 个人,而 5. 1 可以表示人数 吗?(不可以)所以它们是不同类型的数,数 5 是正数中整个 的数,我们就称它为“正整数” ,而 5. 1 不是整个的数,称为 “正分数,
22、, (由于小数可化为分数,以后把小数和分 数都称为分数) 通过教师的引导、鼓励和不断完善,以及学生自己的概括, 最后归纳出我们已经学过的 5 类不同的数,它们分别是“正整 数,零,负整数,正分数,负分数, 按照书本的说法,得 出“整数” “分数”和“有理数”的概念 看书了解有理数名 称的由来 “统称”是指“合起来总的名称”的意思 试一试:按照以上的分类,你能作出一张有理数的分类表吗? 你能说出以上有理数的分类是以什么为标准的吗?(是按照整 数和分数来划分的) 练一练: 分类是数 学中解决问题 的常用手段, 这个引入具有 开放的特点, 学生乐于参与 学生自己 尝试分类时, 可能会很粗略, 教师给
23、予引导 和鼓励,划分 数的类型要从 文字所表示的 意义上去引导, 这样学生易于 理解。 有理数的 分类表要在黑 板或媒体上展 示,分类的标 准要引导学生 去体会 这个分类 14 1、任意写出三个有理数,并说出是什么类型的数,与同 伴进行交流 2、教科书第 10 页练习 此练习中出现了集合的概念,可向学生作如下的说明 把一些数放在一起,就组成了一个数的集合,简称“数集” , 所有有理数组成的数集叫做有理数集类似地,所有整数组成 的数集叫做整数集,所有负数组成的数集叫做负数集; 数集一般用圆圈或大括号表示,因为集合中的数是无限的, 而本题中只填了所给的几个数,所以应该加上省略号 思考:上面练习中的
24、四个集合合并在一起就是全体有理数 的集合吗? 创新探究: 问题 2:有理数可分为正数和负数两大类,对吗?为什么? 教学时,要 让学生总结已经学过的数,鼓励学生概 括,通过交流和 讨论,教师作适当的指导,逐步得到如 下的分类表。 有理 数 课堂小结: 到现在为止我们学过的数都是有理数(圆周率除外) ,有 可视学生的程 度确定是否有 必要教学。 应使学生 了解分类的标 准不一样时, 分类的结果也 是不同的,所 以分类的标准 要明确,使分 类后每一个参 加分类的象属 于其中的某一 类而只能属于 这一类,教学 中教师可举出 通俗易懂的例 子作些说明, 可以按年龄, 也可以按性别、 地域来分等。 正有理
25、数 零 负有理数 正整数 正分数 负整数 负分数 15 理数可以按不同的标准进行分类,标准不同,分类的结果也不 同。 本课作业: 1、必做题:教科书习题 1.2 第 1 题 2、教师自行准备 课 后 心 得 1、本课在引人了负数后对所学过的数按照一定的标准进行分类, 提出了有理数的概 念分类是数学中解决问题的常用手段,通过本节课的学习使学生 了解分类的思想并进 行简单的分类是数学能力的体现,教师在教学中应引起足够的重 视关于分类标准与分 类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概 念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。 2、本课具有开放性的特点,给学生提供了
26、较大的思维空间,能 促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免 直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究 提高的特点,对学生分类能力的养成有很好的作用。 3、两种分类方法,应以第一种方法为主,第二种方法可视学生 的情况进行。 16 本期总第( 5、6)课时 进 度 第一章(单元)第 2 节 (课)2 课时 课型 新课 备课时间 课题内 容 1.2.2 数轴 授课时间 教 学 目 标 1、掌握数轴的概念,理解数轴上的点和有理数的对应关系; 2、会正确地画出数轴,会用数轴上的点表示给定的有理数,会 根据数轴上的点读出所表示的有理数; 3、感受在特定的条件下数与形是
27、可以相互转化的,体验生活中 的数学。 17 重 点 难 点 关 键 数轴的概念和用数轴上的点表示有理数。 教 具 多媒体 教学课时及板书设计 旁批 设置情境、引入课题: 教师通过实例、课件演示得到温度计读数 问题 1:温度计是我们日常生活中用来测量温度的重要工具,你 会读温度计吗?请你尝试读出图中三个温度计所表示的温度? (多媒体出示 3 幅图,三个温度分别为零上、零度和零下) 问题 2:在一条东西向的马路上,有一个汽车站,汽车站东 3 m 和 7.5m 处分别有一棵柳树和一棵杨树,汽车站西 3 m 和 4.8m 处 分别有一棵槐树和一根电线杆,试画图表示这一情境 (小组讨论,交流合作,动手操
28、作) 合作交流、探究新知: 教师:由上述两问题我们得到什么启发?你能用一条直线上 的点表示有理数吗? 让学生在讨论的基础上动手操作,在操作的基础上归纳出:可 以表示有理数的直线必须满足什么条件? 从而得出数轴的三要素:原点、正方向、单位长度 从游戏中学习数学: 做游戏:教师准备一根绳子,请 8 个同学走上来,把位置调 整为等距离,规定第 4 个同学为原点,由西向东为正方向,每个 创设 问题情境, 激发学生 的学习热 情,发现 生活中的 数学 点表 示数的感 性认识。 点表 示数的理 性认识。 体验 数形结合 思想;只 描述数轴 特征即可, 18 同学都有一个整数编号,请大家记住,现在请第一排的
29、同学依次 发出口令,口令为数字时,该数对应的同学要回答“到” ;口令为 该同学的名字时,该同学要报出他对应的“数字” ,如果规定第 3 个同学为原点,游戏还能进行吗? 寻找规律归纳结论: 问题 3: 1、你能举出一些在现实生活中用直线表示数的实际例子吗? 2、如果给你一些数,你能相应地在数轴上找出它们的准确位 置吗?如果给你数轴上的点,你能读出它所表示的数吗? 3、哪些数在原点的左边,哪些数在原点的右边,由此你会发 现什么规律? 4、每个数到原点的距离是多少?由此你会发现了什么规律? (小组讨论,交流归纳) 归纳出一般结论,教科书第 9 的归纳。 巩固练习: 教科书第 9 页练习 课堂小结:
30、请学生总结: 1、数轴的三个要素; 2、数轴的作以及数与点的转化方法。 本课作业: 1、必做题:教科书习题 1.2 第 2 题 2、选做题:教师自行安排 不用特别 强调数轴 三要求。 学生 游戏体验, 对数轴概 念的理解 这些 问题是本 节课要求 学会的技 能,教学 中要以学 生探究学 习为主来 完成,教 师可结合 教科书给 学生适当 指导。 19 课 后 心 得 1、数轴是数形转化、结合的重要媒介,情境设计的原型来源于 生活实际,学生易于体验和接受,让学生通过观察、思考和自己动 手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同 时培养学生的抽象和概括能力,也体出了从感性认识,到理性
31、认识, 到抽象概括的认识规律。 2、教学过程突出了情竟到抽象到概括的主线,教学方法体了特 殊到一般,数形结合的数学思想方法。 3、注意从学生的知识经验出发,充分发挥学生的主体意识,让 学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展 与变化,培养学生自主探索的学习方法。 本期总第( 7、9 )课时 进 度 第一章(单元)第 2 节 (课)3 课时 课型 新课 备课时间 课题内 容 1.2.3 相反数 授课时间 20 教 学 目 标 1、掌握相反数的概念,进一步理解数轴上的点与数的对应关系; 2、通过归纳相反数在数轴上所表示的点的特征,培养归纳能力; 3、体验数形结合的思想。 重 点
32、难 点 关 键 教学重点:归纳相反数在数轴上表示的点的特征。 教学难点:相反数的概念。 教 具 多媒体 教学课时及板书设计 旁批 设置情境引入课题: 问题 1:请将下列 4 个数分成两类,并说出为什么要这样分 类 1, 2,5,2 允许学生有不同的分法,只要能说出道理,都要难予鼓励, 但教师要做适当的引导,逐渐得出 5 和5,2 和2 分别归 类是具有较特征的分法。 (引导学生观察与原点的距离) 思考结论:教科书第 13 页的思考 再换 2 个类似的数试一试。 归纳结论:教科书第 13 页的归纳。 深化主题提炼定义: 给出相反数的定义 以开放 的形式创设 情境,以学 生进行讨论, 并培养分类
33、的能力 培养学 生的观察与 归纳能力, 渗透数形思 想 体验对称的 图形的特点, 21 问题 2:你怎样理解相反数定义中的“只有符号不同”和 “互为”一词的含义?零的相反数是什么?为什么? 学生思考讨论交流,教师归纳总结。 规律:一般地,数 a 的相反数可以表示为a 思考:数轴上表示相反数的两个点和原点有什么关系? 练一练:教科书第 10 页第一个练习 给出规律解决问题: 问题 3:(5)和(5)分别表示什么意思?你能化 简它们吗? 学生交流。 分别表示5 和5 的相反数是5 和5 练一练:教科书第 10 页第二个练习 课堂小结: 1、相反数的定义 2、互为相反数的数在数轴上表示的点的特征 3
34、、怎样求一个数的相反数?怎样表示一个数的相反数? 本课作业: 1、必做题 教科书习题 1.2 第 3 题 2、选做题 教师自行安排 为相反数在 数轴上的特 征做准备。 深化相 反数的概念; “零的相反 数是零”是 相反数定义 的一部分。 强化互 为相反数的 数在数轴上 表示的点的 几何意义. 利用相 反数的概念 得出求一个 数的相反数 的方法。 课 后 心 1、相反数的概念使有理数的各个运算法则容易表述,也揭示 了两个特殊数的特征这两个特殊数在数量上具有相同的绝对值, 它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有 22 得 广泛的应用所以本教学设计围绕数量和几何意义展开,渗透数形
35、 结合的思想 2、教学引人以开放式的问题人手,培养学生的分类和发散思维 的能力;把数在数轴上表示出来并观察它们的特征,在复习数轴知 识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加 深对相反数概念的理解;问题 2 能帮助学生准确把握相反数的概念; 问题 3 实际上给出了求一个数的相反数的方法 3、本教学设计体现了新课标的教学理念,学生在教师的引导下 进行自主学习,自主探究,观察归纳,重视学生的思维过程,并给 学生留有发挥的余地 本期总第( 10、11)课时 进 第一章(单元)第 2 节 课型 新课 备课时间 23 度 (课)4 课时 课题内 容 1.2.4 绝对值 授课时间 教 学
36、目 标 1、掌握绝对值的概念,有理数大小比较法则 2、学会绝对值的计算,会比较两个或多个有理数的大小 3、体验数学的概念、法则来自于实际生活,渗透数形结合和分类思 想 重 点 难 点 关 键 教学重点:两个负数大小的比较。 教学难点:绝对值的概念。 教 具 多媒体 教学课时及板书设计 旁批 设置情境引入课题: 星期天黄老师从学校出发,开车去游玩,她先向东行 20 千 米,到朱家尖,下午她又向西行 30 千米,回到家中(学校、 朱家尖、家在同一直线上) ,如果规定向东为正,用有理数 表示黄老师两次所行的路程;如果汽车每公里耗油 0.15 升, 计算这天汽车共耗油多少升? 学生思考后,教师作如下说
37、明: 实际生活中有些问题只关注量的具体值,而与相反 意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行 驶的距离和汽油的价格,而与行驶的方向无关; 观察并思考:画一条数轴,原点表示学校,在数轴上画出 这个例子 中,第一问是 相反意义的量, 用正负数表示, 后一问的解答 则与符号没有 关系,说明实 际生活中有些 问题,人们只 需知道它们的 具体数值,而 24 表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家 与学校的距离 学生回答后,教师说明如下: 数轴上表示数的点到原点的距离只与这个点离开原点的长 度有关,而与它所表示的数的正负性无关; 一般地,数轴上表示数 a 的点与原点的距离叫做
38、数 a 的绝 对值,记做|a| 例如,上面的问题中|20|=20,|10|=10 显然,|0|=0 合作交流探究新知: 例 1 求下列各数的绝对值,并归纳求有理数 a 的绝对有什 么规律? 3,5,0,58,0.6 要求小组讨论,合作学习 教师引导学生利用绝对值的意义先求出答案,然后观察原 数与它的绝对值这两个数据的特征,并结合相反数的意义,最 后总结得出求绝对值法则(见教科书第 15 页) 巩固练习:教科书第 15 页练习 其中第 1 题按法则直接写出答案,是求绝对值的基本训练; 第 2 题是对相反数和绝对值概念进行辨别,对学生的分析、判 断能力有较高要求,要注意思考的周密性,要让学生体会出
39、不 同说法之间的区别 结合实际发现新知: 引导学生看教科书第 16 页的图,并回答相关问题: 并不关注它们 所表示的意 义为引入绝 对值概念做准 备并使学生 体 验数学知 识与生活实际 的联系 因为绝对 值概念的几何 意义是数形转 化的典型 模型,学 生初次接触较 难接受,所以 配置此观察与 思考,为建立 绝对值概念作 准备 求一个数 的绝时值的法 25 把 14 个气温从低到高排列; 把这 14 个数用数轴上的点表示出来; 观察并思考:观察这些点在数轴上的位置,并思考它们与 温度的高低之间的关系,由此你觉得两个有理数可以比较大小 吗? 应怎样比较两个数的大小呢? 学生交流后,教师总结: 14
40、 个数从左到右的顺序就是温度从低到高的顺序: 在数轴上表示有理数,它们从左到右的顺序就是从小到大 的顺序,即左边的数小于右边的数 在上面 14 个数中,选两个数比较,再选两个数试试,通 过比较,归纳得出有理数大小比较法则 想象练习:想象头脑中有一条数轴,其上有两个点,分别 表示数一 100 和一 90,体会这两个点到原点的距离(即它们的 绝对值)以及这两个数的大小之间的关系 要求学生在头脑中有清晰的图形 课堂练习: 例 2,比较下列各数的大小(教科书第 13 页例) 比较大小的过程要紧扣法则进行,注意书写格式 练习:第 13 页练习 课堂小结: 怎样求一个数的绝对值,怎样比较有理数的大小? 本
41、课作业: 1、必做题:教科书习题 1,2,第 4,5,6,10 2、选做题:教师自行安排 则,可看做是 绝对值概 念的一个应用, 所以安排此 例 学生能做 的尽量让学生 完成,教师在 教学过程中只 是组织者本 着这个理念, 设计这个讨 论 课 后 心 得 1、情景的创设出于如下考虑:体现数学知识与生活实际的紧 密联系,让学生在这些熟悉的日常生活情境中获得数学体验,不仅 加深对绝对值的理解,更感受到学习绝对值概念的必要性和激发学 习的兴趣教材中数的绝对值概念是根据几何意义来定义的(其 本质是将数转化为形来解释,是难点) ,然后通过练习归纳出求有理 26 数的绝对值的规律,如果直接给出绝对值的概念
42、,灌输知识的味道 很浓,且太抽象,学生不易接受 2、一个数绝对值的法则,实际上是绝对值概念的直接应用,也 体现着分类的数学思想,所以直接通过例 1 归纳得出,显得非常紧 凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师 应更重视学生的自主学习和探究的过程,关注学生的思维,做好教 学的组织和引导,留给学生足够的空间。 3、有理数大小的比较法则是大小规定的直接归纳,其中第 (2)条学生较难理解,教学中要结合绝对值的意义和规定:“在数 轴上表示有理数,它们从左到右的顺序就是从小到大的顺序” ,帮助 学生建立“数轴上越左边的点到原点的距离越大,所以表示的数越 小”这个数形结合的模型为此设置了
43、想象练习 4、本节课的内容包括绝对值的概念和数的绝对值的求法、有理 数大小比较的法则,教学内容很多,学生接受起来可能会有困难, 建议把有理数的大小比较移到下节课教学。 本期总第( 12、13 )课时 进 度 第一章(单元)第 3 节(课) 21 课时 课型 新课 备课 时间 课题内 1.3.1 有理数的加法(一) 授课 27 容 时间 教 学 目 标 1、在现实背景中理解有理数加法的意义 2、经历探索有理数加法法则的过程,理解有理数的加法法则 3、能积极地参与探究有理数加法法则的活动,并学会与他人交流合 作 4、能较为熟练地进行有理数的加法运算,并能解决简单的实际间 题 5、在教学中适当渗透分
44、类讨论思想 重 点 难 点 关 键 教学重点:异号两数相加。 教学难点:和的符号的确定。 教 具 多媒体 教学课时及板书设计 旁批 设置情境引入课题: 回顾用正负数表示数量的实际例子; 在足球比赛中,如果把进球数记为正数,失球数记为负数, 它们的和叫做净胜球数若红队进 4 个球,失 2 个球,则红 队的胜球数,可以怎样表示?蓝队的胜球数呢? 师:如何进行类似的有理数的加法运算呢?这就是我们 这节课一起与大家探讨的问题 (出示课题) 分析问题探究新知: 如果是球队在某场比赛中上半场失了两个球,下半场失 了 3 个球,那么它的得胜球是几个呢?算式应该怎么列?若 这支球队上半场进了 2 个球,下半场
45、失了 3 个球,又如何列 出算式,求它的得胜球呢? (学生思考回答) 思考:请同学们想想,这支球队在这场比赛中还可能出 现其他的什么情况?你能列出算式吗?与同伴交流。 学生相互交流后,教师进一步引导学生可以把两个有理 数相加归纳为同号两数相加、异号两数相加、一个数同零相 加这三种情况 借助数轴来讨论有理数的加法I 一个物体向左右方向运动,我们规定向左运动为负,向 让学生感 受到在实际问 题中做加法运 算的数可能超 出正数的范围, 体会学习有理 数加法的必要 性,激发学生 探究新知的兴 趣 再次创设 足球比赛情境, 一方面与引题 相呼应,联系 密切,另一方 面让学生在此 情境中感受到 有理数相加
46、的 几种不同情形, 并能将它分类, 渗透分类讨论 思想 28 右为正,向右运动 5m,记作 5m,向左运动 5m,记作5 m. (1) (小组合作)把我们已经得出的几种有理数相加的 情况在数轴上用运动的方向表示出来,并求出结果,解释它 的意义 (2)交流汇报 (对学习小组的汇报结果,数轴用实物 投影仪展示,算式由教师写在黑板上) (3)说一说有理数相加应注意什么?(符号,绝对值) 能用自己的语言归纳如何相加吗? (4)在学生归纳的基础上,教师出示有理数加法法则 有理数加法法则: 1、同号两数相加,取相同的符号,并把绝对值相加 2、绝对值不相等的异号两数相加,取绝对值较大的加数 的符号,并用较大
47、的绝对值减去小的绝对值,互为相反数的 两个数相加得 0 3、一个数同。相加,仍得这个数 解决问题: 例 1 计算: (1) (3)(-9) ; (2) (5)13; (3)0 十(7) ; (4) (-4.7)3.9. 教师板演,让学生说出每一步运算所依据的法则 请同学们比较,有理数的加法运算与小学时候学的加法有什 么异同?(如:有理数加法计算中要注意符号,和不一定大 于加数等等) 例 2 足球循环赛中,红队 4:1 胜黄队,黄队 1:0 胜蓝 队蓝队 1:0 胜红队,计算各队的净胜球数 (让学生读数,理解题意,思考解决方案,然后由学生口 述,教师板书) 学生活动:请学生说一说在生活中用到有理
48、数加法的例 子。 课堂练习: 教科书第 18 页练习 课堂小结: 估计学生 能顺利地得到 ()() , ()(一) , (一)() , (一)十() , 0() , 0(一) 但 不能把它归的 为同号异号等 三类,所以此 处需教师点 拔、指扎,体 现教师的引导 者作用 假设原点 0 为第一次运 动起点,第二 次运动 的起点是第一 次运动的终 点若学生 在学习小组内 不能很好地参 与探究,也可 以让其参照教 科书第 21 页的 “探究”自主 进行让学 生感受“数学 模型”的思 想学会与 同伴交流,并 在交流中获 益培养学生 的语言表达能 力和归纳能力, 也许学生说得 不够严谨,但 29 通过这节
49、课的学习,你有哪些收获,学生自己总结。 本课作业: 必做题:教科书习题 1.3 第 1、12、第 13 题。 这并不重要, 重要的足能用 自己的语言表 达自己所发现 的规律。 课 后 心 得 1、在本节课的设计中,注重引导学生参与探究、归纳(用自己 的语言叙迷)有理数加法法则的过程 2、注意渗透数学思想方法数学思想方法的渗透不可能立即见 效,也不可能靠一朝一夕让学生理解、掌握,所以,本节课在这一 方面主要是让学生感知研究数学问题的一般方法(分类、辩析、归 纳、化归等) 如在探究加法法则时,有意识地把各种情况先分为三 类(同号、异号,一个数同 0 相加) ;在运用法则时,当和的符号确 定以后,有理数的加法就转化为算术的加减法 3、注意学生合作学习的学习方式,让学生在与他人合作中受益, 学会交流,学会倾听别人的意见和建议