血液由血浆和血细胞组成.doc

上传人:11****ws 文档编号:4212141 上传时间:2019-10-04 格式:DOC 页数:9 大小:47.50KB
下载 相关 举报
血液由血浆和血细胞组成.doc_第1页
第1页 / 共9页
血液由血浆和血细胞组成.doc_第2页
第2页 / 共9页
血液由血浆和血细胞组成.doc_第3页
第3页 / 共9页
血液由血浆和血细胞组成.doc_第4页
第4页 / 共9页
血液由血浆和血细胞组成.doc_第5页
第5页 / 共9页
点击查看更多>>
资源描述

1、血液由血浆和血细胞组成。 血液 (一)血浆 血浆相当于结缔组织的细胞间质,为浅黄色半透明液体,其中除含有大量水 分以外,还有无机盐、纤维蛋白原、白蛋白、球蛋白、酶、激素、各种营养物 质、代谢产物等。这些物质无一定的形态,但具有重要的生理功能。 1L 血浆中含有 900910g 水(90%91%)。6585g 蛋白质(6.5% 8.5% )和 20g 低分子物质 (2%).低分子物质中有多种电解质和小分子有机化合物 ,如 代谢产物和其他某些激素等。血浆中电解质含量与组织液基本相同。 (二)血细胞 在机体的生命过程中,血细胞不断地新陈代谢。红细胞的平均寿命约 120 天, 颗粒白细胞和血小板的生存

2、期限一般不超过 10 天。淋巴细胞的生存期长短不 等,从几个小时直到几年。 血细胞及血小板的产生来自造血器官,红血细胞、有粒白血细胞及血小板由 红骨髓产生,无粒白血细胞则由淋巴结和脾脏产生。 血细胞分为三类:红细胞、白细胞、血小板。 1、红细胞 红细胞(erythrocyte , red blood cell)直径 7 8.5m,呈双凹圆盘状,中央 较薄(1.0m ),周缘较厚 血液 (2.0m),故在血涂片标本中呈中央染色较浅、周缘较深(见彩图)。在扫 描电镜下,可清楚地显示红细胞这种形态特点。红细胞的这种形态使它具有较 大的表面积(约 140m2),从而能最大限度地适应其功能 携 O2 和

3、部分 CO2。新鲜单个红细胞为黄绿色,大量红细胞使血液呈猩红色,而且多个红细 胞常叠连一起呈串钱状,称红细胞缗线。 红细胞有一定的弹性和可塑性,细胞通过毛细血管时可改变形状。红细胞正 常形态的保持需 ATP 供给能量,由于红细胞缺乏线粒体,ATP 只由无氧糖酵 解产生;一旦缺乏 ATP 供能,则导致细胞膜结构改变,细胞的形态也随之由圆 盘状变为棘球状。这种形态改变一般是可逆的。可随着 ATP 的供能状态的改善 而恢复。 成熟红细胞无细胞核,也无细胞器,胞质内充满血红蛋白( hemoglobin,Hb)。 血红蛋白是含铁的蛋白质,约占红细胞重量的 33。它具有结合与运输 O2 和 CO2 的功能

4、,当血液流经肺时,肺内的 O2 分压高(102mmHg),CO2 分压 低(40mmHg),血红蛋白(氧分压 40mmHg,二氧化碳分压 46mmHg)即放出 CO2 而与 O2 结合;当血液流经其它器官的组织时,由于该处的 CO2 分压高 (46mmHg)而 O2 分压低(40mmHg ),于是红细胞即放出 O2 并结合 CO2。由于血红蛋白具有这种性质,所以红细胞能供给全身组织和细胞所需的 O2,带走所产生的部分 CO2。 正常成人每微升血液中红细胞数的平均值,男性约 400 万500 万个,女性 约 350 万450 万个。血液中血 血液中的红细胞 红蛋白含量,男性约 120150g/L

5、,女性约 105135g/L。全身所有红细胞表 面积总计,相当于人体表面积的 2000 倍。红细胞的数目及血红蛋白的含量可 有生理性改变,如婴儿高于成人,运动时多于安静状态,高原地区居民大都高 于平原地区居民,红细胞的形态和数目的改变、以及血红蛋白的质和量的改变 超出正常范围,则表现为病理现象。一般说,红细胞数少于 300 万1 为贫血, 血红蛋白低于 100g/L 则为缺铁性贫血。此时常伴有红细胞的直径及形态的改变, 如大红细胞贫血的红细胞平均直径9m,小红细胞贫血的红细胞平均直径 6m。缺铁性贫血的红细胞,由于血红蛋白的含量明显降低,以致中央淡染区 明显扩大。 红细胞的渗透压与血浆相等,使

6、出入红细胞的水分维持平衡。当血浆渗透压 降低时,过量水分进入细胞,细胞膨胀成球形,甚至破裂,血红蛋白逸出,称 为溶血(hemolysis);溶血后残留的红细胞膜囊称为血影(ghost )。反之, 若血浆的渗透压升高,可使红细胞内的水分析出过多,致使红细胞皱缩。凡能 损害红细胞的因素,如脂溶剂、蛇毒、溶血性细菌等均能引起溶血。 红细胞的细胞膜,除具有一般细胞膜的共性外,还有其特殊性,例如红细胞 膜上有 ABO 血型抗原。 外周血中除大量成熟红细胞以外,还有少量未完全成熟的红细胞,称为网织 红细胞(reticulocyte)在成人约为红细胞总数的 0.51.5,新生儿较多, 可达 36。网织红细胞

7、的直径略大于成熟红细胞,在常规染色的血涂片中 不能与成熟红细胞区分。用煌焦蓝作体外活体染色,可见网织红细胞的胞质内 有染成蓝色的细网或颗粒,它是细胞内残留的核糖体。核糖体的存在,表明网 织红细胞仍有一些合成血红蛋白的功能。红细胞完全成熟时,核糖体消失,血红 蛋白的含量即不再增加。贫血病人如果造血功能良好,其血液中网织红细胞的 百分比值增高。因此,网织红细胞的计数有一定临床意义,它是贫血等某些血 液病的诊断、疗效判断和估计预指标之一。 红细胞的平均寿命约 120 天。衰老的红细胞虽无形态上的特殊樗,但其机能 活动和理化性质都有变化,如酶活性降低,血红蛋白变性,细胞膜脆性增大, 以及表面电荷改变等

8、,因而细胞与氧结合的能力降低且容易破碎。衰老的红细 胞多在脾、骨髓和肝等处被巨噬细胞吞噬,同时由红骨髓生成和释放同等数量 红细胞进入外周血液,维持红细胞数的相对恒定。 2、白细胞 白细胞(leukocyte,white blood cell)为无色有核的球形细胞,体积比红细胞 大,能作变形运动,具有防 血液的组成 御和免疫功能。成人白细胞的正常值为 400010000 个/1。男女无明显差别。 婴幼儿稍高于成人。血液中白细胞的数值可受各种生理因素的影响,如劳动、 运动、饮食及妇女月经期,均略有增多。在疾病状态下,白细胞总数及各种白 细胞的百分比值皆可发生改变。 光镜下,根据白细胞胞质有无特殊颗

9、粒,可将其分为有粒白细胞和无粒白细 胞两类。有粒白细胞又根据颗粒的嗜色性,分为中性粒细胞、嗜酸性粒细胞和 嗜碱性粒细胞。无粒白细胞有单核细胞和淋巴细胞两种。 中性粒细胞:中性粒细胞(neutrophilic granulocyte,neutrophil)占白细胞总 数的 5070,是白细胞中数量最多的一种。细胞呈球形,直径 1012m,核染色质呈团块状。核的形态多样,有的呈腊肠状,称杆状核; 有的呈分叶状,叶间有细丝相连,称分叶核。细胞核一般为 25 叶,正常人 以 23 叶者居多。在某些疾病情况下,核 12 叶的细胞百分率增多,称为核 左移;核 4 5 叶的细胞增多,称为核右移。一般说核分叶

10、越多,表明细胞越 近衰老,但这不是绝对的,在有些疾病情况下,新生的中性粒细胞也可出现细 胞核为 5 叶或更多叶的。杆状核粒细胞则较幼稚,约占粒细胞总数的 510,在机体受细菌严重感染时,其比例显著增高。 中性粒细胞的胞质染成粉红色,含有许多细小的淡紫色及淡红色颗粒,颗粒 可分为嗜天青颗粒和特殊颗粒两种。嗜天青颗粒较少,呈紫色,约占颗粒总数 的 20%,光镜下着色略深,体积较大;电镜下呈圆形或椭圆形,直径 0.60.7m,电子密度较高,它是一种溶酶体,含有酸性磷酸酶和过氧化物酶 等,能消化分解吞噬的异物。特殊颗粒数量多,淡红色,约占颗粒总数的 80%,颗粒较小,直径 0.30.4m ,呈哑铃形或

11、椭圆形,内含碱性磷酸酶、吞 噬素、溶菌酶等。吞噬素具有杀菌作用,溶菌酶能溶解细菌表面的糖蛋白。 中性粒细胞具有活跃的变形运动和吞噬功能。当机体某一部位受到细菌侵犯 时,中性粒细胞对细菌产物及受感染组织释放的某些化学物质具有趋化性,能 以变形运动穿出毛细血管,聚集到细菌侵犯部位,大量吞噬细菌,形成吞噬小 体。吞噬小体先后与特殊颗粒及溶酶体融合,细菌即被各种水解酶、氧化酶、 溶菌酶及其它具有杀菌作用的蛋白质、多肽等成分杀死并分解消化。由此可见, 中性粒细胞在体内起着重要的防御作用。中性粒细胞吞噬细胞后,自身也常坏 死,成为脓细胞。中性粒细胞在血液中停留约 67 小时,在组织中存活约 13 天。 嗜

12、酸性粒细胞:嗜酸性粒细胞(eosinophilic granulocyte,eosinophil)占白细 胞总数的 0.53。细 临床用血 胞呈球形,直径 1015m,核常为 2 叶,胞质内充满粗大(直径 0.51.0m)、均匀、略带折光性的嗜酸性颗粒,染成桔红色。电镜下,颗粒 多呈椭圆形,有膜包被,内含颗粒状基质和方形或长方形晶体。颗粒含有酸性 磷酸酶、芳基硫酸酯酶、过氧化物酶和组胺酶等,因此它也是一种溶酶体。 嗜酸性粒细胞也能作变形运动,并具有趋化性。它能吞噬抗原抗体复合物, 释放组胺酶灭活组胺,从而减弱过敏反应。嗜酸性粒细胞还能借助抗体与某些 寄生虫表面结合,释放颗粒内物质,杀灭寄生虫。

13、故而嗜酸性粒细胞具有抗过 敏和抗寄生虫作用。在过敏性疾病或寄生虫病时,血液中嗜酸性粒细胞增多。 它在血液中一般仅停留数小时,在组织中可存活 812 天。 嗜碱性粒细胞:嗜碱性粒细胞(basoophilic granulocyte,basophil)数量最少, 占白细胞总数的 015。细胞呈球形,直径 1012m。胞核分叶或呈 S 形或 不规则形,着色较浅。胞质内含有嗜碱性颗粒,大小不等,分布不均,染成蓝 紫色,可覆盖在核上。颗粒具有异染性,甲苯胺蓝染色呈紫红色。电镜下,嗜 碱性颗粒内充满细小微粒,呈均匀状或螺纹状分布。颗粒内含有肝素和组胺, 可被快速释放;而白三烯则存在于细胞基质内,它的释放较

14、前者缓慢。肝素具 有抗凝血作用,组胺和白三烯参与过敏反应。嗜碱性粒细胞在组织中可存活 1215 天。 嗜碱性粒细胞与肥大细胞,在分布、胞核的形态,以及颗粒的大小与结构上, 均有所不同。但两种细胞都含有肝素、组胺和白三烯等成分,故嗜碱性粒细胞 的功能与肥大细胞相似,但两者的关系尚待研究。 单核细胞单核细胞(monocyte)占白细胞总数的 38 。它是白细胞中 体积最大的细胞。直径 1420m,呈圆形或椭圆形。胞核形态多样,呈卵圆 形、肾形、马蹄形或不规则形等。核常偏位,染色质颗粒细而松散,故着色较 浅。胞质较多,呈弱嗜碱性,含有许多细小的嗜天青颗粒,使胞质染成深浅不 匀的灰蓝色。颗粒内含有过氧

15、化物酶、酸性磷酸酶、非特异性酯酶和溶菌酶, 这些酶不仅与单核细胞的功能有关,而且可作为与淋巴细胞的鉴别点。电镜下, 细胞表面有皱褶和微绒毛,胞质内有许多吞噬泡、线粒体和粗面内质网,颗粒 具溶酶体样结构。 单核细胞具有活跃的变形运动、明显的趋化性和一定的吞噬功能。单核细胞 是巨噬细胞的前身,它在血 血液透析图 流中停留 1 5 天后,穿出血管进入组织和体腔,分化为巨噬细胞。单核细胞 和巨噬细胞都能消灭侵入机体的细菌,吞噬异物颗粒,消除体内衰老损伤的细 胞,并参与免疫,但其功能不及巨噬细胞强。 淋巴细胞:淋巴细胞(lymphocyte )占白细胞总数的 2030,圆形或椭 圆形,大小不等。直径 6

16、8m 的为小淋巴细胞,912m 的为中淋巴细胞, 1320m 的为大淋巴细胞。小淋巴细胞数量最多,细胞核圆形,一侧常有小 凹陷,染色质致密呈块状,着色深,核占细胞的大部,胞质很少,在核周成一 窄缘,嗜碱性,染成蔚蓝色,含少量嗜天青颗粒。中淋巴细胞和大淋巴细胞的 核椭圆形,染色质较疏松,故着色较浅,胞质较多,胞质内也可见少量嗜天青 颗粒。少数大、中淋巴细胞的核呈肾形,胞质内含有较多的大嗜天青颗粒,称 为大颗粒淋巴细胞、电镜下,淋巴细胞的胞质内主要是大量的游离核糖体,其 他细胞器均不发达。 以往曾认为,大、中、小淋巴细胞的分化程度不同,小淋巴细胞为终末细胞。 但目前普遍认为,多数小淋巴细胞并非终末

17、细胞。它在抗原刺激下可转变为幼 稚的淋巴细胞,进而增殖分化。而且淋巴细胞也并非单一群体,根据它们的发 生部位、表面特征、寿命长短和免疫功能的不同,至少可分为 T 细胞、B 细胞、 杀伤(K )细胞和自然杀伤(NK)细胞等四类。 血液中的 T 细胞约占淋巴细胞总数的 75,它参与细胞免疫,如排斥异移体 移植物、抗肿瘤等,并具有免疫调节功能。B 细胞约占血中淋巴细胞总数的 1015。B 细胞受抗原刺激后增殖分化为浆细胞,产生抗体,参与体液免 疫(详见免疫系统)。 3、血小板 血小板(platelet)是哺乳动物血液中的有形成分之一。它有质膜,没有细胞 核结构,一般呈圆形,体积小于红细胞和白细胞。血

18、小板在长期内被看作是血 液中的无功能的细胞碎片。直到 1882 年意大利医师 JB比佐泽罗发现它们 在血管损伤后的止血过程中起着重要作用,才首次提出血小板的命名。 血小板具有特定的形态结构和生化组成,在正常血液中有较恒定的数量(如 人的血小板数为每立方毫米 1030 万),在止血、伤口愈合、炎症反应、血 栓形成及器官移植排斥等生理和病理过程中有重要作用。 血小板只存在于哺乳动物血液中。低等脊椎动物圆口纲有纺锤细胞起凝血作 用,鱼纲开始有特定的血栓细胞。两栖、爬行和鸟纲动物血液中都有血栓细胞, 血栓细胞是有细胞核的梭形成椭圆形细胞,功能与血小板相似。无脊椎动物没 有专一的血栓细胞,如软体动物的变

19、形细胞兼有防御和创伤治愈作用。甲壳动 物只有一种血细胞,兼有凝血作用。 血小板为圆盘形,直径 14 微米到 78 微米不等,且个体差异很大 (512m3)。血小板因能运动和变形,故用一般方法观察时表现为多形态。血 小板结构复杂,简言之,由外向内为 3 层结构,即由外膜、单元膜及膜下微丝 结构组成的外围为第 1 层;第 2 层为凝胶层,电镜下见到与周围平行的微丝及 微管构造;第 3 层为微器官层,有线粒体、致密小体、残核等结构。 血细胞形态、数量、比例和血红蛋白含量的测定称为血像。患病时,血像常 有显著变化,故检查血像对了解机体状况和诊断疾病十分重要。 编辑本段 血型 血型(blood grou

20、ps;blood types) 是以血液抗原形式表现出来的一种遗传性状。狭义地讲,血型专指红细胞抗 原在个体间的差异;但现已知道除红细胞外,在白细胞、血小板乃至某些血浆 蛋白,个体之间也存在着抗原差异。因此,广义的血型应包括血液各成分的抗 原在个体间出现的差异。通常人们对血型的了解往往仅局限于 ABO 血型以及 输血问题等方面,实际上,血型在人类学、遗传学、法医学、临床医学等学科 都有广泛的实用价值,因此具有着重要的理论和实践意义,同时,动物血型的 发现也为血型研究提供了新的问题和研究方向。 ABO 血型 ABO 血型可分为 A、B、AB 和 O 型等 4 种血型。红细胞含 A 抗原和 H 抗

21、原 的叫做 A 型,A 型的人血清中含有抗 B 抗体;红细胞含 B 抗原和 H 抗原的叫 做 B 型, B 型的人血清中含有抗 A 抗体;红细胞含 A 抗原、B 抗原和 H 抗原, 叫做 AB 型,这种血型的人血清中没有抗 A 抗体和抗 B 抗体;红细胞只有 H 抗 原,叫做 O 型,O 型的人血清中含有抗 A 抗体和抗 B 抗体。 ABO 血型物质除存在于红细胞膜上外,还出现于唾液、胃液、精液等分泌液 中。中国 60汉族人唾液中有 ABO 血型物质。血型物质的化学本质是指构成 血型抗原的糖蛋白或糖脂,而血型的特异性主要取决于血型抗原糖链的组成 (即血型抗原的决定簇在糖链上)。A、B、H3 种

22、血型抗原化学结构的差异, 仅在于糖链末端的 1 个单糖。 A 抗原糖链末端为 N-乙酰半乳糖,而 B 抗原糖链 末端为半乳糖,H 抗原和 A、B 抗原相比则糖链末端少 1 个半乳糖或 N-乙酰半 乳糖。1981 年已有人用绿咖啡豆酶(半乳糖苷酶)作用于 B 型红细胞,切去 B 抗原上的半乳糖,从而使 B 型转变成 O 型获得成功。 E von 邓格恩及 L希尔斯费尔德于 1911 年发现 A 血型的亚型。他们看到 不同 A 型人的红细胞与抗 A 血清发生凝集反应的强度不一,在反应弱的 A 型人 血清中还有一种抗体能与反应强的 A 型红细胞发生凝集反应。据此认为在 A 型 中存在亚型;即 A1

23、及 A2 亚型。A1.型红细胞与抗 A 血清(来自 B 或 O 型人) 反应强,而 A2 型红细胞与抗 A 血清反应弱。而且在部分 A2 型人的血清中, 除存在的抗 B 外,还有不规则的抗 A1。在 B 型人血清中有两种抗体:抗 A 及 抗 A1。抗 A 能与 A1 及 A2 细胞发生反应;抗 A1 只与 A1 细胞发生反应。A1 型红细胞上有 A 及 A1 两种抗原。A2 细胞上只有 A 抗原。AB 型也可分为 A1B 及 A2B 等亚型。此外还有一些其他亚型。 MN 血型 红细胞膜上另一类血型抗原叫 MN 抗原,即红细胞膜上的血型糖蛋白 A。它 在 SOS 凝胶电泳谱上显示两条区带,即 P

24、AS1 和 PAS2 ,血型糖蛋白 A 是两者的二聚物。已知血型糖蛋白 A 由 131 个氨基酸组成,其一级结构已测定 (图 2)。血型糖蛋白 A 的肽链呈三节式结构,中间第 7392 号氨基酸为疏 水性肽链,可横穿膜脂层;N 端肽链位于膜外侧,与血型活性有关,在这段肽 链上分布有 15 条 O-糖苷键型糖链和 1 条 N-糖苷键型糖链,糖链中唾液酸占红 细胞膜上全部唾液酸的一半以上;C 端肽链位于膜内侧,含较多酸性氨基酸。 MN 抗原由 M 抗原和 N 抗原两部分组成,如果用神经氨酸酶将 M 抗原切去 1 个唾液酸( N-乙酰神经氨酸),则为 N 抗原,如再切去一个唾液酸则抗原性 完全失去。

25、MN 抗原的抗原性还和肽链上的氨基有关,若将氨基用乙酰基保护 后即失去抗原性。 白细胞血型HLA HLA 是人类白细胞抗原中最重要的一类。与红细胞血型相比,人们对白细胞 抗原的了解较晚,人体第一个白细胞抗原 Mac 是 1958 年法国科学家 J多塞 发现的。HLA 是人体白细胞抗原的英文缩写,已发现 HLA 抗原有 144 种以上, 这些抗原分为 A、B 、C、 D、DR、DQ 和 DP7 个系列,而且 HLA 在其他细胞 表面上也存在。 HLA 抗原是一种糖蛋白(含糖为 9),其分子结构与免疫球蛋白极相似 (图 3)。HLA 分子由 4 条肽链组成(含 2 条轻链和 2 条重链),重链上连

26、接 2 条糖链。HLA 分子部分镶嵌在细胞膜的双脂层中,其插入膜的部分相当于免 疫球蛋白 IgG 的 Fc 区段,轻链为 -微球蛋白。由于分子结构上的相似,故 HLA 与有保卫功能的免疫防御系统密切相关。 此外,HLA 和红细胞血型一样都受遗传规律的控制。决定 HLA 型的基因在 第 6 对染色体上。每个人分别可从父母获得一套染色体,所以一个人可以同时 查出 A、B 、 C、D 和 DR5 个系列中的 510 种白细胞型,因此表现出来的各 种白细胞型有上亿种之多。在无血缘关系的人间找出 HLA 相同的两个是很困难 的。但同胞兄弟姊妹之间总是有 14 机会 HLA 完全相同或完全不同。因此法 医

27、鉴定亲缘关系时,HLA 测定是最有力的工具。 输血 应以输同型血为原则,只有在没有同型血且十分紧急的情况中,才能输入异 型血。在这种情况下,O 型血可以少量(不大于 200ml)输给各类血型,AB 型 血的病人也可以接受少于 200ml 的任何血型的血液。 6 月 14 日“ 世界献血者日” 编辑本段 血液循环 心脏节律性的搏动推动血液在心血管系统中按一定方向循环往复地流动。血 液循环是英国哈维根据大量的实验、观察和逻辑推理于 1628 年提出的科学概 念。然而限于当时的条件,他并不完全了解血液是如何由动脉流向静脉的。 1661 年意大利马尔庇基在显微镜下发现了动、静脉之间的毛细血管,从而完全

28、 证明了哈维的正确推断。动物在进化过程中,血液循环的形式是多样的。循环 系统的组成有开放式和封闭式;循环的途径有单循环和双循环。人类血液循环 是封闭式的,由体循环和肺循环两条途径构成的双循环。血液由左心室射出经 主动脉及其各级分支流到全身的毛细血管,在此与组织液进行物质交换,供给 组织细胞氧和营养物质,运走二氧化碳和代谢产物,动脉血变为静脉血;再经 各级静脉汇合成上、下腔静脉流回右心房,这一循环为体循环。血液由右心室 射出经肺动脉流到肺毛细血管,在此与肺泡气进行气体交换,吸收氧并排出二 氧化碳,静脉血变为动脉血;然后经肺静脉流回左心房,这一循环为肺循环。 编辑本段 血液的功能 血液在人体生命活

29、动中主要具有四方面的功能。 运输 运输是血液的基本功能,自肺吸入的氧气以及由消化道吸收的营养物质,都 依靠血液运输才能到达全身各组织。同时组织代谢产生的二氧化碳与其他废物 也赖血液运输到肺、肾等处排泄,从而保证身体正常代谢的进行。血液的运输 功能主要是靠红细胞来完成的。贫血时,红细胞的数量减少或质量下降,从而 不同程度地影响了血液这一运输功能,出现一系列的病理变化。 参与体液调节 激素分泌直接进入血液,依靠血液输送到达相应的靶器官,使其发挥一定的 生理作用。可见,血液是体液性调节的联系媒介。此外,如酶、维生素等物质 也是依靠血液传递才能发挥对代谢的调节作用的。 保持内环境稳态 由于血液不断循环

30、及其与各部分体液之间广泛沟通,故对体内水和电解质的 平衡、酸碱度平衡以及体温的恒定等都起决定性的作用。 防御功能 机体具有防御或消除伤害性刺激的能力,涉及多方面,血液体现其中免疫和 止血等功能。例如,血液中的白细胞能吞噬并分解外来的微生物和体内衰老、 死亡的组织细胞,有的则为免疫细胞,血浆中的抗体如抗毒素、溶菌素等均能 防御或消灭入侵机体的细菌和毒素。上述防御功能也即指血液的免疫防御功能, 主要靠白细胞实现。此外,血液凝固对血管损伤起防御作用。 调节体温 血液也是一种胶体,在做实验时不慎被划伤流血,可以使用氯化铁紧急止血.原 理:血液是一种胶体,胶体中加入了电解质使血液介稳性被破坏,可以使胶体

31、发生 聚沉.而血液中氢氧根含量很少所以不会大量形成氢氧化铁 . 哺乳类的血液 两管以 EDTA 抗凝血处理后的血液,左管是红血球沉降在底部后的血;右管 是新取出的血。 以人为例,成人大约有 5 升血液。以体积计,血细胞约占血液的 45%。 每升血液有: 5 1012 个红血球(约占血液体积的 45%):在哺乳类,成熟的红血球没有 细胞核及细胞器。它们含有血红素以输送氧气。在红血球上的糖蛋白决定了血 型是哪一类。红血球在血中所占比例称为红细胞压积。人体所有红血球的表面 积总和大约是人体外皮肤面积的 2000 倍。1 9 109 个白血球(约占血液体积的 1.0%):它们是免疫系统的一部分,负 责

32、破坏及移除年老或异常的细胞及细胞残骸,及攻击病原体及外来物体。 3 1011 个血小板(约占血液体积少于 1%):它们负责凝血,把纤维蛋白 原变成纤维蛋白。纤维蛋白结成网状聚集红血球形成血栓,血栓阻止更多血液 流失,并帮助阻止细菌进入体内。 编辑本段 生理学 制造及降解 血细胞在骨髓产生,过程称为“血细胞生成”。蛋白质构成部分,包括凝血因 子,主要由肝脏产生,而激素由内分泌腺产生,至于水状成份则由丘脑下部调 节肾脏去维持,肠道也有份间接参与。 血细胞在脾脏及肝枯否细胞降解,肝也有移除一些蛋白质、脂肪及氨基酸。 肾脏把身体的废物带进尿液。正常的红血球在血浆中约有 120 天寿命。 输送氧气 一个

33、在正常气压环境中呼吸的健康人类,他的动脉血液中的氧约有 98.5%与 血红素产生化学结合,只有 1.5%是溶于其它血液成份中。血红素也是哺乳类及 许多其它物种的主要氧输送者。 除了肺动脉、脐动脉及两者的对应静脉外,带氧血液从心脏经过动脉、小动 脉及毛细血管到达身体各处,然后脱氧血液经小静脉及静脉流回心脏。 在正常情形下,人在休息时,离开肺部的血液中的血红素约有 9899%被氧 饱和。一个健康成人在休息时,回到肺部的“脱氧”血液仍然约有 75%氧饱和。 持续运动增加氧的消耗,减少静脉血液的氧饱和,在一个受过训练的运动员身 上可降至少于 15%,即使呼吸率及血流增加,动脉血液的氧饱和在这些情形下

34、可降至 95%或更低。对于一个正在休息(例如在手术期间被麻醉)的人来说, 这样低的静脉氧饱和被视为危险 Template:Todo:此段文字容易引起误解,请继 续修缮。 由于母体供应胎盘的血液的氧分压只有成人肺部的 20%,胎儿制造了一种具 有更强氧亲和力的血红素(血红素 F),确保可以从血液中尽可能地取得足够 的氧。 除了氧外,一些物质也可与血红素结合,有时候可以造成身体的永久性损害。 一氧化碳是其中之一,它与血红素结合成不可还原的碳氧血红素,从而降低血 液的载氧量,严重时可引致身体缺氧,造成器官的永久性损害甚至死亡。 昆虫 昆虫的血(更恰当的称呼是血淋巴)不参与氧的输送。昆虫身上的气孔容许

35、 空气中的氧直接扩散到身体组织。 病症 伤口流血 血管闭塞,可引致局部缺血,令组织坏死。 血友病 白血病 贫血 地中海贫血 红细胞增多症 正铁血红蛋白血症 经血液传播的传染病 败血症 编辑本段 生成原理 血液的生成很有趣,就像田径场上的接力跑,参与者有胚胎的卵黄囊、肝、 脾、肾、淋巴结、骨髓等。造血始于人胚的第 3 周,此阶段还没有什么器官形 成,一个叫卵黄囊的胚胎组织担起造血的第一责任。 人体血液抹片 人胚第 6 周,人体器官形成,肝脏接着造血。人胚第 3 个月,脾是主要的造血 器官。人胚第 4 个月后,骨髓开始造血,这是人体最重要的造血组织。出生后, 肝、脾造血停止,骨髓负起造血的全部责任。血细胞包括红细胞、白细胞、血 小板等,它们各司其职,但都来自同一种细胞多功能干细胞。由这种细胞 增殖、分化和成熟,才变为在血管里流动的各种终末血细胞

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 重点行业资料库 > 医药卫生

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。