1、1.如图,已知二次函数的图象与轴交于两点与轴交于点,的半径为为上一动点.(1)点的坐标分别为( ),( );(2)是否存在点,使得为直角三角形?若存在,求出点的坐标;若不存在,请说明理由; (3)连接,若为的中点,连接,则的最大值= . 2在平面直角坐标系xOy中,抛物线y=ax2+bx+2过点A(2,0),B(2,2),与y轴交于点C(1)求抛物线y=ax2+bx+2的函数表达式;(2)若点D在抛物线y=ax2+bx+2的对称轴上,求ACD的周长的最小值;(3)在抛物线y=ax2+bx+2的对称轴上是否存在点P,使ACP是直角三角形?若存在直接写出点P的坐标,若不存在,请说明理由3如图1,抛
2、物线经过平行四边形的顶点、,抛物线与轴的另一交点为.经过点的直线将平行四边形分割为面积相等的两部分,与抛物线交于另一点.点为直线上方抛物线上一动点,设点的横坐标为.(1)求抛物线的解析式;(2)当何值时,的面积最大?并求最大值的立方根;(3)是否存在点使为直角三角形?若存在,求出的值;若不存在,说明理由.4(12分)如图1,点A坐标为(2,0),以OA为边在第一象限内作等边OAB,点C为x轴上一动点,且在点A右侧,连接BC,以BC为边在第一象限内作等边BCD,连接AD交BC于E(1)直接回答:OBC与ABD全等吗?试说明:无论点C如何移动,AD始终与OB平行;(2)当点C运动到使AC2=AEA
3、D时,如图2,经过O、B、C三点的抛物线为y1试问:y1上是否存在动点P,使BEP为直角三角形且BE为直角边?若存在,求出点P坐标;若不存在,说明理由;(3)在(2)的条件下,将y1沿x轴翻折得y2,设y1与y2组成的图形为M,函数y=x+m的图象l与M有公共点试写出:l与M的公共点为3个时,m的取值5如图,在平面直角坐标系中,已知抛物线过A,B,C三点,点A的坐 标是,点C的坐标是,动点P在抛物线上 (1)b =_,c =_,点B的坐标为_;(直接填写结果) (2)是否存在点P,使得ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由; (3)过动点P
4、作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标6如图,抛物线y=-x2+x+2与x轴交于点A,点B,与y轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点. 设点P的坐标为(m, 0),过点P作x轴的垂线l交抛物线于点Q.(1)求点A,点B,点C的坐标;(2)求直线BD的解析式;(3)当点P在线段OB上运动时,直线l交BD于点M,试探究m为何值时,四边形CQMD是平行四边形;(4)在点P的运动过程中,是否存在点Q,使BDQ是以BD为直角边的直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.7如图,已知点A的坐
5、标为(-2,0),直线y=-+3与x轴,y轴分别交于点B和点C, 连接AC,顶点为D的抛物线y=ax2+bx+c过A,B,C三点(1)请直接写出B,C两点的坐标,抛物线的解析式及顶点D的坐标;(2)设抛物线的对称轴DE交线段BC于点E,P为第一象限内抛物线上一点,过点P 作x轴的垂线,交线段BC于点F若四边形DEFP为平行四边形,求点P的坐标;(3)设点M是线段BC上的一动点,过点M作MNAB,交AC于点N点.Q从点B出发,以每秒l个单位长度的速度沿线段BA向点A运动,运动时间为t(秒)当t(秒)为何值时,存在QMN为等腰直角三角形?8如图,抛物线y=ax2+bx+c经过ABC的三个顶点,与y
6、轴相交于(0,),点A坐标为(1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上(1)求该抛物线的函数关系表达式(2)点F为线段AC上一动点,过F作FEx轴,FGy轴,垂足分别为E、G,当四边形OEFG为正方形时,求出F点的坐标(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使DMN是等腰三角形?若存在,求t的值;若不存在请说明理由9如图,抛物线过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过
7、点B作直线BH轴,交轴于点H(1)求抛物线的表达式;(2)直接写出点C的坐标,并求出ABC的面积;(3)点P是抛物线上一动点,且位于第四象限,当ABP的面积为6时,求出点P的坐标;(4)若点M在直线BH上运动,点N在轴上运动,当以点C、M、N为顶点的三角形为等腰直角三角形时,请直接写出此时CMN的面积第26题图第26题 备用图 10如图,在平面直角坐标系中,点O为坐标原点,抛物线经过点M(1,3)和N(3,5),与x轴交于A、B两点,与y轴交于C点。(1)试判断抛物线与x轴交点的情况;(2)平移这条抛物线,使平移后的抛物线经过A(-2,0)且与y轴的交点为B同时满足以A、O、B为顶点的三角形是
8、等腰直角三角形.请写出平移的过程,并说明理由。1如图,抛物线y=x2+bx+c与直线y=x3交于A、B两点,其中点A在y轴上,点B坐标为(4,5),点P为y轴左侧的抛物线上一动点,过点P作PCx轴于点C,交AB于点D(1)求抛物线的解析式;(2)以O,A,P,D为顶点的平行四边形是否存在?如存在,求点P的坐标;若不存在,说明理由(3)当点P运动到直线AB下方某一处时,过点P作PMAB,垂足为M,连接PA使PAM为等腰直角三角形,请直接写出此时点P的坐标11如图,对称轴为直线的抛物线经过B(2,0)、C(0,4)两点,抛物线与轴的另一交点为A(1)求抛物线的解析式;(2)若点P为第一象限内抛物线上一点,设四边形COBP的面积为S,求S的最大值;(3)如图,若M是线段BC上一动点,在轴上是否存在这样有点Q,使MQC为等腰三角形且MQB为直角三角形?若存在,求出Q点坐标;若不存在,请说明理由