1、课程名称: 自动控制原理 (A/B卷 闭卷) 试题二一、填空题(每空 1 分,共15分) 1、反馈控制又称偏差控制,其控制作用是通过 与反馈量的差值进行的。2、复合控制有两种基本形式:即按 的前馈复合控制和按 的前馈复合控制。3、两个传递函数分别为G1(s)与G2(s)的环节,以并联方式连接,其等效传递函数为,则G(s)为 (用G1(s)与G2(s) 表示)。4、典型二阶系统极点分布如图1所示,则无阻尼自然频率 ,阻尼比 ,该系统的特征方程为 ,该系统的单位阶跃响应曲线为 。5、若某系统的单位脉冲响应为,则该系统的传递函数G(s)为 。6、根轨迹起始于 ,终止于 。7、设某最小相位系统的相频特
2、性为,则该系统的开环传递函数为 。8、PI控制器的输入输出关系的时域表达式是,其相应的传递函数为,由于积分环节的引入,可以改善系统的性能。二、选择题(每题 2 分,共20分)1、采用负反馈形式连接后,则 ( )A、一定能使闭环系统稳定; B、系统动态性能一定会提高;C、一定能使干扰引起的误差逐渐减小,最后完全消除;D、需要调整系统的结构参数,才能改善系统性能。2、下列哪种措施对提高系统的稳定性没有效果 ( )。A、增加开环极点; B、在积分环节外加单位负反馈;C、增加开环零点; D、引入串联超前校正装置。3、系统特征方程为 ,则系统 ( )A、稳定; B、单位阶跃响应曲线为单调指数上升;C、临
3、界稳定; D、右半平面闭环极点数。4、系统在作用下的稳态误差,说明 ( )A、 型别; B、系统不稳定;C、 输入幅值过大; D、闭环传递函数中有一个积分环节。5、对于以下情况应绘制0根轨迹的是( )A、主反馈口符号为“-” ; B、除外的其他参数变化时;C、非单位反馈系统; D、根轨迹方程(标准形式)为。6、开环频域性能指标中的相角裕度对应时域性能指标( ) 。A、超调 B、稳态误差 C、调整时间 D、峰值时间7、已知开环幅频特性如图2所示, 则图中不稳定的系统是( )。 系统 系统 系统图2A、系统 B、系统 C、系统 D、都不稳定8、若某最小相位系统的相角裕度,则下列说法正确的是 ( )
4、。A、不稳定; B、只有当幅值裕度时才稳定;C、稳定; D、不能判用相角裕度判断系统的稳定性。9、若某串联校正装置的传递函数为,则该校正装置属于( )。 A、超前校正 B、滞后校正 C、滞后-超前校正 D、不能判断10、下列串联校正装置的传递函数中,能在处提供最大相位超前角的是:A、 B、 C、 D、三、(8分)试建立如图3所示电路的动态微分方程,并求传递函数。图3四、(共20分)系统结构图如图4所示:图41、写出闭环传递函数表达式;(4分)2、要使系统满足条件:,试确定相应的参数和;(4分)3、求此时系统的动态性能指标;(4分)4、时,求系统由产生的稳态误差;(4分)5、确定,使干扰对系统输
5、出无影响。(4分)五、(共15分)已知某单位反馈系统的开环传递函数为: 1、绘制该系统以根轨迹增益Kr为变量的根轨迹(求出:渐近线、分离点、与虚轴的交点等);(8分)2、确定使系统满足的开环增益的取值范围。(7分)六、(共22分)某最小相位系统的开环对数幅频特性曲线如图5所示:1、写出该系统的开环传递函数;(8分)2、写出该系统的开环频率特性、开环幅频特性及开环相频特性。(3分)3、求系统的相角裕度。(7分)4、若系统的稳定裕度不够大,可以采用什么措施提高系统的稳定裕度?(4分)试题三一、填空题(每空 1 分,共15分) 1、在水箱水温控制系统中,受控对象为 ,被控量为 。2、自动控制系统有两
6、种基本控制方式,当控制装置与受控对象之间只有顺向作用而无反向联系时,称为 ;当控制装置与受控对象之间不但有顺向作用而且还有反向联系时,称为 ;含有测速发电机的电动机速度控制系统,属于 。3、稳定是对控制系统最基本的要求,若一个控制系统的响应曲线为衰减振荡,则该系统 。判断一个闭环线性控制系统是否稳定,在时域分析中采用 ;在频域分析中采用 。4、传递函数是指在 初始条件下、线性定常控制系统的 与 之比。5、设系统的开环传递函数为,则其开环幅频特性为 ,相频特性为 。6、频域性能指标与时域性能指标有着对应关系,开环频域性能指标中的幅值穿越频率对应时域性能指标 ,它们反映了系统动态过程的。二、选择题
7、(每题 2 分,共20分)1、关于传递函数,错误的说法是 ( ) A 传递函数只适用于线性定常系统; B 传递函数不仅取决于系统的结构参数,给定输入和扰动对传递函数也有影响; C 传递函数一般是为复变量s的真分式;D 闭环传递函数的极点决定了系统的稳定性。2、下列哪种措施对改善系统的精度没有效果 ( )。A、增加积分环节 B、提高系统的开环增益K C、增加微分环节 D、引入扰动补偿3、高阶系统的主导闭环极点越靠近虚轴,则系统的 ( ) 。A、准确度越高 B、准确度越低 C、响应速度越快 D、响应速度越慢4、已知系统的开环传递函数为,则该系统的开环增益为 ( )。A、 50 B、25 C、10
8、D、5 5、若某系统的根轨迹有两个起点位于原点,则说明该系统( ) 。 A、含两个理想微分环节 B、含两个积分环节 C、位置误差系数为0 D、速度误差系数为06、开环频域性能指标中的相角裕度对应时域性能指标( ) 。A、超调 B、稳态误差 C、调整时间 D、峰值时间7、已知某些系统的开环传递函数如下,属于最小相位系统的是( )A、 B 、 C 、 D、8、若系统增加合适的开环零点,则下列说法不正确的是 ( )。 A、可改善系统的快速性及平稳性; B、会增加系统的信噪比;C、会使系统的根轨迹向s平面的左方弯曲或移动; D、可增加系统的稳定裕度。9、开环对数幅频特性的低频段决定了系统的( )。A、
9、稳态精度 B、稳定裕度 C、抗干扰性能 D、快速性10、下列系统中属于不稳定的系统是( )。 A、闭环极点为的系统 B、闭环特征方程为的系统C、阶跃响应为的系统 D、脉冲响应为的系统三、(8分)写出下图所示系统的传递函数(结构图化简,梅逊公式均可)。四、(共20分)设系统闭环传递函数 ,试求: 1、; ;时单位阶跃响应的超调量、调节时间及峰值时间。(7分) 2、;和;时单位阶跃响应的超调量、调节时间和峰值时间。(7分)3、根据计算结果,讨论参数、对阶跃响应的影响。(6分)五、(共15分)已知某单位反馈系统的开环传递函数为,试: 1、绘制该系统以根轨迹增益Kr为变量的根轨迹(求出:分离点、与虚轴
10、的交点等);(8分)2、求系统稳定且为欠阻尼状态时开环增益K的取值范围。(7分)六、(共22分)已知反馈系统的开环传递函数为 ,试: 1、用奈奎斯特判据判断系统的稳定性;(10分)2、若给定输入r(t) = 2t2时,要求系统的稳态误差为0.25,问开环增益K应取何值。(7分)3、求系统满足上面要求的相角裕度。(5分)试题四一、填空题(每空 1 分,共20分) 1、对自动控制系统的基本要求可以概括为三个方面,即: 、快速性和 。2、控制系统的 称为传递函数。一阶系统传函标准形式是,二阶系统传函标准形式是。3、在经典控制理论中,可采用、根轨迹法或 等方法判断线性控制系统稳定性。4、控制系统的数学
11、模型,取决于系统和 , 与外作用及初始条件无关。5、线性系统的对数幅频特性,纵坐标取值为 ,横坐标为 。6、奈奎斯特稳定判据中,Z = P - R ,其中P是指 ,Z是指 ,R指 。7、在二阶系统的单位阶跃响应图中,定义为 。是 。8、PI控制规律的时域表达式是 。P I D 控制规律的传递函数表达式是 。9、设系统的开环传递函数为,则其开环幅频特性为 ,相频特性为 。二、判断选择题(每题2分,共 16分)1、关于线性系统稳态误差,正确的说法是:( ) A、 一型系统在跟踪斜坡输入信号时无误差 ;B、 稳态误差计算的通用公式是;C、 增大系统开环增益K可以减小稳态误差;D、 增加积分环节可以消
12、除稳态误差,而且不会影响系统稳定性。2、适合应用传递函数描述的系统是 ( )。A、单输入,单输出的线性定常系统;B、单输入,单输出的线性时变系统;C、单输入,单输出的定常系统;D、非线性系统。3、若某负反馈控制系统的开环传递函数为,则该系统的闭环特征方程为 ( )。A、 B、 C、 D、与是否为单位反馈系统有关4、非单位负反馈系统,其前向通道传递函数为G(S),反馈通道传递函数为H(S),当输入信号为R(S),则从输入端定义的误差E(S)为 ( )A、 B 、C 、 D、5、已知下列负反馈系统的开环传递函数,应画零度根轨迹的是 ( )。A、 B 、 C 、 D、6、闭环系统的动态性能主要取决于
13、开环对数幅频特性的:A、低频段 B、开环增益 C、高频段 D、中频段 7、已知单位反馈系统的开环传递函数为,当输入信号是时,系统的稳态误差是( )A、 0 ; B、 ; C、 10 ; D、 208、关于系统零极点位置对系统性能的影响,下列观点中正确的是( )A 、 如果闭环极点全部位于S左半平面,则系统一定是稳定的。稳定性与闭环零点位置无关;B、 如果闭环系统无零点,且闭环极点均为负实数极点,则时间响应一定是衰减振荡的;C 、 超调量仅取决于闭环复数主导极点的衰减率,与其它零极点位置无关; D、 如果系统有开环极点处于S右半平面,则系统不稳定。三、(16分)已知系统的结构如图1 所示,其中,
14、输入信号为单位斜坡函数,求系统的稳态误差(8分)。分析能否通过调节增益 ,使稳态误差小于 0.2 (8分)。一G(s)R(s)C(s)图 1 四、(16分)设负反馈系统如图2 ,前向通道传递函数为,若采用测速负反馈,试画出以为参变量的根轨迹(10分),并讨论大小对系统性能的影响(6分)。图2 H (s)一G(s)R(s)C(s)五、已知系统开环传递函数为均大于0 ,试用奈奎斯特稳定判据判断系统稳定性。 (16分) 第五题、第六题可任选其一六、已知最小相位系统的对数幅频特性如图3所示。试求系统的开环传递函数。(16分)L()1110202-20-40-40图 3 -10dBC(s)R(s)一图4
15、 七、设控制系统如图4,要求校正后系统在输入信号是单位斜坡时的稳态误差不大于0.05,相角裕度不小于40o ,幅值裕度不小于 10 dB,试设计串联校正网络。( 16分)试题一答案一、填空题(每题1分,共15分)1、给定值2、输入;扰动; 3、G1(s)+G2(s);4、; ;衰减振荡5、;6、开环极点;开环零点7、8、; 稳态性能二、判断选择题(每题2分,共 20分)1、D2、A3、C4、A5、D6、A7、B8、C 9、B10、B三、(8分)建立电路的动态微分方程,并求传递函数。解:1、建立电路的动态微分方程根据KCL有 (2分)即 (2分)2、求传递函数对微分方程进行拉氏变换得 (2分)得
16、传递函数 (2分) 第1 页 共 2 页四、(共20分)解:1、(4分) 2、(4分) 3、(4分) 4、(4分) 5、(4分)令:得:五、(共15分)1、绘制根轨迹 (8分)(1)系统有有3个开环极点(起点):0、-3、-3,无开环零点(有限终点);(1分) (2)实轴上的轨迹:(-,-3)及(-3,0); (1分)(3) 3条渐近线: (2分)(4) 分离点: 得: (2分) (5)与虚轴交点: (2分)绘制根轨迹如右图所示。2、(7分)开环增益K与根轨迹增益Kr的关系:得 (1分) 系统稳定时根轨迹增益Kr的取值范围:, (2分)系统稳定且为欠阻尼状态时根轨迹增益Kr的取值范围:, (3
17、分)系统稳定且为欠阻尼状态时开环增益K的取值范围: (1分)六、(共22分)解:1、从开环波特图可知,原系统具有比例环节、一个积分环节、两个惯性环节。故其开环传函应有以下形式 (2分)由图可知:处的纵坐标为40dB, 则, 得 (2分) (2分)故系统的开环传函为 (2分)2、写出该系统的开环频率特性、开环幅频特性及开环相频特性:开环频率特性 (1分)开环幅频特性 (1分)开环相频特性: (1分)3、求系统的相角裕度: 求幅值穿越频率,令 得(3分) (2分) (2分)对最小相位系统 临界稳定4、(4分)可以采用以下措施提高系统的稳定裕度:增加串联超前校正装置;增加串联滞后校正装置;增加串联滞
18、后-超前校正装置;增加开环零点;增加PI或PD或PID控制器;在积分环节外加单位负反馈。试题二一、填空题(每题1分,共15分)1、给定值2、输入;扰动; 3、G1(s)+G2(s);4、; ;衰减振荡5、;6、开环极点;开环零点7、8、; 稳态性能二、判断选择题(每题2分,共 20分)1、D2、A3、C4、A5、D6、A7、B8、C 9、B10、B三、(8分)建立电路的动态微分方程,并求传递函数。解:1、建立电路的动态微分方程根据KCL有 (2分)即 (2分)2、求传递函数对微分方程进行拉氏变换得 (2分)得传递函数 (2分) 第1 页 共 2 页四、(共20分)解:1、(4分) 2、(4分)
19、 3、(4分) 4、(4分) 5、(4分)令:得:五、(共15分)1、绘制根轨迹 (8分)(1)系统有有3个开环极点(起点):0、-3、-3,无开环零点(有限终点);(1分) (2)实轴上的轨迹:(-,-3)及(-3,0); (1分)(3) 3条渐近线: (2分)(4) 分离点: 得: (2分) (5)与虚轴交点: (2分)绘制根轨迹如右图所示。2、(7分)开环增益K与根轨迹增益Kr的关系:得 (1分) 系统稳定时根轨迹增益Kr的取值范围:, (2分)系统稳定且为欠阻尼状态时根轨迹增益Kr的取值范围:, (3分)系统稳定且为欠阻尼状态时开环增益K的取值范围: (1分)六、(共22分)解:1、从
20、开环波特图可知,原系统具有比例环节、一个积分环节、两个惯性环节。故其开环传函应有以下形式 (2分)由图可知:处的纵坐标为40dB, 则, 得 (2分) (2分)故系统的开环传函为 (2分)2、写出该系统的开环频率特性、开环幅频特性及开环相频特性:开环频率特性 (1分)开环幅频特性 (1分)开环相频特性: (1分)3、求系统的相角裕度: 求幅值穿越频率,令 得(3分) (2分) (2分)对最小相位系统 临界稳定4、(4分)可以采用以下措施提高系统的稳定裕度:增加串联超前校正装置;增加串联滞后校正装置;增加串联滞后-超前校正装置;增加开环零点;增加PI或PD或PID控制器;在积分环节外加单位负反馈
21、。 试题三答案一、填空题(每题1分,共20分)1、水箱;水温2、开环控制系统;闭环控制系统;闭环控制系统3、稳定;劳斯判据;奈奎斯特判据4、零; 输出拉氏变换;输入拉氏变换5、;(或:)6、调整时间;快速性二、判断选择题(每题2分,共 20分)1、B2、C3、D4、C5、B6、A7、B8、B 9、A10、D三、(8分)写出下图所示系统的传递函数(结构图化简,梅逊公式均可)。解:传递函数G(s):根据梅逊公式 (1分)4条回路:, , 无互不接触回路。(2分)特征式: (2分)2条前向通道: ; (2分)(1分)四、(共20分) 解:系统的闭环传函的标准形式为:,其中 1、当 时, (4分)当
22、时, (3分)2、当 时, (4分)当 时, (3分)3、根据计算结果,讨论参数、对阶跃响应的影响。(6分)(1)系统超调只与阻尼系数有关,而与时间常数T无关,增大,超调减小;(2分)(2)当时间常数T一定,阻尼系数增大,调整时间减小,即暂态过程缩短;峰值时间增加,即初始响应速度变慢; (2分)(3)当阻尼系数一定,时间常数T增大,调整时间增加,即暂态过程变长;峰值时间增加,即初始响应速度也变慢。 (2分)五、(共15分)(1)系统有有2个开环极点(起点):0、3,1个开环零点(终点)为:-1; (2分) (2)实轴上的轨迹:(-,-1)及(0,3); (2分)(3)求分离点坐标,得 ; (2
23、分)分别对应的根轨迹增益为(4)求与虚轴的交点系统的闭环特征方程为,即令,得 (2分)根轨迹如图1所示。图12、求系统稳定且为欠阻尼状态时开环增益K的取值范围系统稳定时根轨迹增益Kr的取值范围:, (2分)系统稳定且为欠阻尼状态时根轨迹增益Kr的取值范围:, (3分)开环增益K与根轨迹增益Kr的关系: (1分)系统稳定且为欠阻尼状态时开环增益K的取值范围: (1分)六、(共22分)解:1、系统的开环频率特性为(2分)幅频特性:, 相频特性:(2分)起点:;(1分)终点:;(1分) ,图2曲线位于第3象限与实轴无交点。(1分)开环频率幅相特性图如图2所示。 判断稳定性:开环传函无右半平面的极点,
24、则,极坐标图不包围(1,j0)点,则根据奈氏判据,ZP2N0 系统稳定。(3分) 2、若给定输入r(t) = 2t2时,要求系统的稳态误差为0.25,求开环增益K:系统为1型,位置误差系数K P =,速度误差系数KV =K , (2分)依题意: , (3分)得 (2分)故满足稳态误差要求的开环传递函数为3、满足稳态误差要求系统的相角裕度:令幅频特性:,得, (2分), (1分)相角裕度: (2分) 试题四答案一、填空题(每题1分,共20分)1、稳定性(或:稳,平稳性);准确性(或:稳态精度,精度)2、输出拉氏变换与输入拉氏变换在零初始条件下的比值; ; (或:) 3、劳斯判据(或:时域分析法)
25、; 奈奎斯特判据(或:频域分析法)4、结构; 参数5、(或:);(或:按对数分度)6、开环传函中具有正实部的极点的个数,(或:右半S平面的开环极点个数); 闭环传函中具有正实部的极点的个数(或:右半S平面的闭环极点个数,不稳定的根的个数);奈氏曲线逆时针方向包围 (-1, j0 )整圈数。7、系统响应到达并保持在终值误差内所需的最短时间(或:调整时间,调节时间);响应的最大偏移量与终值的差与的比的百分数。(或:,超调)8、 (或:); (或:)9、;二、判断选择题(每题2分,共 16分)1、C2、A3、B4、D5、A6、D7、D8、A三、(16分)解:型系统在跟踪单位斜坡输入信号时,稳态误差为
26、(2分)而静态速度误差系数(2分)稳态误差为。(4分)要使必须,即要大于5。(6分)但其上限要符合系统稳定性要求。可由劳斯判据决定其上限。系统的闭环特征方程是(1分)构造劳斯表如下为使首列大于0,必须。综合稳态误差和稳定性要求,当时能保证稳态误差小于0.2。(1分)四、(16分)解:系统的开环传函,其闭环特征多项式为,(1分)以不含的各项和除方程两边,得,令,得到等效开环传函为(2分)参数根轨迹,起点:,终点:有限零点,无穷零点(2分)实轴上根轨迹分布:,0(2分)实轴上根轨迹的分离点:令,得合理的分离点是,(2分)该分离点对应的根轨迹增益为,对应的速度反馈时间常数(1分)根轨迹有一根与负实轴
27、重合的渐近线。由于开环传函两个极点,一个有限零点且零点不在两极点之间,故根轨迹为以零点为圆心,以该圆心到分离点距离为半径的圆周。根轨迹与虚轴无交点,均处于s左半平面。系统绝对稳定。根轨迹如图1所示。(4分)讨论大小对系统性能的影响如下:(1)、当时,系统为欠阻尼状态。根轨迹处在第二、三象限,闭环极点为共轭的复数极点。系统阻尼比随着由零逐渐增大而增加。动态响应为阻尼振荡过程,增加将使振荡频率减小(),但响应速度加快,调节时间缩短()。(1分)(2)、当,为临界阻尼状态,动态过程不再有振荡和超调。(1分)(3)、当,为过阻尼状态。系统响应为单调变化过程。(1分)图1四题系统参数根轨迹五、(16分)
28、解:由题已知:,系统的开环频率特性为(2分)开环频率特性极坐标图 起点:;(1分)终点:;(1分) 图2五题幅相曲线1与实轴的交点:令虚频特性为零,即得(2分)实部(2分)开环极坐标图如图2所示。(4分)由于开环传函无右半平面的极点,则当时,极坐标图不包围(1,j0)点,系统稳定。(1分)当时,极坐标图穿过临界点(1,j0)点,系统临界稳定。(1分)当时,极坐标图顺时针方向包围(1,j0)点一圈。 按奈氏判据,ZPN2。系统不稳定。(2分)闭环有两个右平面的极点。六、(16分)解:从开环波特图可知,系统具有比例环节、两个积分环节、一个一阶微分环节和一个惯性环节。故其开环传函应有以下形式 (8分
29、)由图可知:处的纵坐标为40dB, 则,得 (2分)又由的幅值分贝数分别为20和0,结合斜率定义,有,解得 rad/s(2分)同理可得或 ,得 rad/s(2分) 故所求系统开环传递函数为(2分)七、( 16分) 解:(1)、系统开环传函,输入信号为单位斜坡函数时的稳态误差为,由于要求稳态误差不大于0.05,取故(5分)(2)、校正前系统的相角裕度计算:得rad/s;而幅值裕度为无穷大,因为不存在。(2分)(3)、根据校正后系统对相位裕度的要求,确定超前环节应提供的相位补偿角(2分)(4)、校正网络参数计算(2分)(5)、超前校正环节在处的幅值为:使校正后的截止频率发生在处,故在此频率处原系统的幅值应为5.31dB 解得(2分)(6)、计算超前网络 在放大3.4倍后,超前校正网络为校正后的总开环传函为:(2分)(7)校验性能指标相角裕度由于校正后的相角始终大于180o,故幅值裕度为无穷大。符合设计性能指标要求。(1分)单纯的课本内容,并不能满足学生的需要,通过补充,达到内容的完善 教育之通病是教用脑的人不用手,不教用手的人用脑,所以一无所能。教育革命的对策是手脑联盟,结果是手与脑的力量都可以大到不可思议。