数学概念的定义形式.doc

上传人:11****ws 文档编号:4255049 上传时间:2019-10-08 格式:DOC 页数:5 大小:41.50KB
下载 相关 举报
数学概念的定义形式.doc_第1页
第1页 / 共5页
数学概念的定义形式.doc_第2页
第2页 / 共5页
数学概念的定义形式.doc_第3页
第3页 / 共5页
数学概念的定义形式.doc_第4页
第4页 / 共5页
数学概念的定义形式.doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、数学概念的定义方式一给概念下定义的意义和定义的结构前面提到过,概念是反映客观事物思想,是客观事物在人的头脑中的抽象概括,是看不见摸不着的,要用词语表达出来,这就是给概念下定义。而明确概念就是要明确概念的内涵和外延。所以,概念定义就是揭示概念的内涵或外延的逻辑方法。揭示概念内涵的定义叫内涵定义,揭示概念外延的定义叫做外延定义。在中学里,大多数概念的定义是内涵定义。任何定义都由被定义项、定义项和定义联项三部分组成。被定义项是需要明确的概念,定义项是用来明确被定义项的概念,定义联项则是用来联接被定义项和定义项的。例如,在定义“三边相等的三角形叫做等边三角形”中,“等边三角形”是被定义项,“三边相等的

2、三角形”是定义项,“叫做”是定义联项。二、常见定义方法。1、原始概念。数学定义要求简明,不能含糊不清。如果定义含糊不清,也就不能明确概念,失去了定义的作用。例如,“点是没有部分的那种东西”就是含糊不清的定义。按这个要求,给某概念下定义时,定义项选用的必须是在此之前已明确定义过的概念,否则概念就会模糊不清。这样顺次上溯,终必出现不能用前面已被定义过的概念来下定义的概念,这样的概念称为原始概念。在中学数学中,对原始概念的解释并非是下定义,这是要明确的。比如:代数中的集合、元素、对应等,几何中的点、线、面等2、属加种差定义法。这种定义法是中学数学中最常用的定义方法,该法即按公式:“邻近的属+种差=被

3、定义概念”下定义,其中,种差是指被定义概念与同一属概念之下其他种概念之间的差别,即被定义概念具有而它的属概念的其他种概念不具有的属性。例如,平行四边形的概念邻近的属是四边形,平行四边形区别于四边形的其他种概念的属性即种差是“一组对边平行并且相等”,这样即可给平行四边形下定义为“一组对边平行并且相等的四边形叫做平行四边形”。利用邻近的属加种差定义方法给概念下定义,一般情况下,应找出被定义概念最邻近的属,这样可使种差简单一些。像下列两个定义:等边的矩形叫做正方形;等边且等角的四边形叫做正方形。前者的种差要比后者的种差简单。邻近的属加种差的定义方法有两种特殊形式:(1)发生式定义方法。它是以被定义概

4、念所反映的对象产生或形成的过程作为种差来下定义的。例如,“在平面内,一个动点与一个定点等距离运动所成的轨迹叫做圆”即是发生式定义。在其中,种差是描述圆的发生过程。(2)关系定义法。它是以被定义概念所反映的对象与另一对象之间关系或它与另一对象对第三者的关系作为种差的一种定义方式。例如,若ab=N,则logaN=b(a0,a1)。即是一个关系定义概念。3、揭示外延的定义方法。数学中有些概念,不易揭示其内涵,可直接指出概念的外延作为它的概念的定义。常见的有以下种类:(1)逆式定义法。这是一种给出概念外延的定义法,又叫归纳定义法例如,整数和分数统称为有理数;正弦、余弦、正切和余切函数叫做三角函数;椭圆

5、、双曲线和抛物线叫做圆锥曲线;逻辑的和、非、积运算叫做逻辑运算等等,都是这种定义法(2)约定式定义法。揭示外延的定义方法还有一种特殊形式,即外延的揭示采用约定的方法,因而也称约定式定义方法。例如,a0=1(a0),0!=1,就是用约定式方法定义的概念。三、概念的引入(1)原始概念 一般采用描述法和抽象化法或用直观说明或指明对象的方法来明确。 “针尖刺木板”的痕迹引入“点”、用“拉紧的绳”或“小孔中射入的光线”来引入“直线”的方法是直观说明法,“1,2,3,叫做自然数”是指明对象法。(2)对于用概念的形成来学习的概念 一般可通过阅读实例,启发学生抽象出本质属性,师生共同进行讨论,最后再准确定义。

6、(3)对于用概念的同化来学习的概念(a)用属加种差定义的概念 新概念是已知概念的特例,新概念可以从认知结构中原有的具有较高概括性的概念中繁衍出来。(b)由概念的推广引入的概念 讲清三点:推广的目的和意义;推广的合理性;推广后更加广泛的含义。(c)采用对比方法引入新概念 当新概念与认知结构中已有概念不能产生从属关系,但与已有的旧概念有相似之处时可采用此法。 关键是弄清不同之处,防止概念的负迁移。(d)根据逆反关系引入新概念 多项式的乘法引入多项式的因式分解、由乘方引入开方、由指数引入对数等。 关键是弄清逆反关系。(4)发生式定义 通过阅读实例或引导学生思考,进行讨论,自然得出构造过程,即揭示出定

7、义的合理性。四、概念的形成的方式 概念形成就是让学生阅读大量同类事物的不同例证中独立发现同类事物的本质属性,从而形成概念。因此,数学概念的形成实质上是抽象出数学对象的共同本质特征的过程。可概括如下:(1)通过阅读比较,辨别各种刺激模式,在知觉水平上进行分析、辨认,根据事物的外部特征进行概括。(2)分化出各种刺激模式的属性。(3)抽象出各个刺激模式的共同属性。(4)在特定的情境中检验假设,确认关键属性。(5)概括,形成概念。(6)把新概念的共同关键属性推广到同类事物中去。(7)用习惯的形式符号表示新概念。数学概念的定义什么叫给概念下定义,就是用已知的概念来认识未知的概念,使未知的概念转化为已知的

8、概念,叫做给概念下定义概念的定义都是由已下定义的概念(已知概念)与被下定义的概念(未知概念)这两部分组成的例如,有理数与无理数(下定义的概念),统称为实数(被下定义的概念);平行四边形(被下定义的概念)是两组对边分别平行的四边形(下定义的概念)其定义方法有下列几种1、直觉定义法直觉定义亦称原始定义,凭直觉产生的原始概念,这些概念不能用其它概念来解释,原始概念的意义只能借助于其它术语和它们各自的特征给予形象的描述如几何中的点、直线、平面、集合的元素、对应等原始概念是人们在长期的实践活动中,对一类事物概括、抽象的结果,是原创性抽象思维活动的产物直觉定义为数不多2、“种+类差”定义法种+类差”定义法

9、:被定义的概念=最邻近的种概念(种)+类差。这是下定义常用的内涵法。“最邻近的种概念”,就是被定义概念的最邻近的种概念,“类差”就是被定义概念在它的最邻近的种概念里区别于其它类概念的那些本质属性。例如,以“平行四边形”为最邻近的种概念的类概念有“矩形”、“菱形”,“菱形”的“邻边相等”是区别于“矩形”的本质属性,“邻边相等”就是“菱形”的类差。我们先看几个用“种+类差”定义的例子:等腰梯形是两腰相等的梯形直角梯形是有一个底角是直角的梯形等腰三角形是两边相等或两角相等的三角形逻辑上还可以通过总结外延给出定义例如:“有理数和无理数统称为实数”等由上述几例可看出,用“种加类差”的方式给概念下定义,首

10、先要找出被定义概念的最邻近的种概念,然后把被定义概念所反映的对象同种概念中的其它类概念所反映的对象进行比较,找出“类差”,最后把类差加最邻近的种概念组成下定义概念而给出定义。种加类差定义法在形式逻辑中也称为实质定义,属于演绎型定义,其顺序是从一般到特殊。这种定义,既揭示了概念所反映对象的特殊性,又指出了一般性,是行之有效的定义方法。由于概念本身的类别特点及类差性质的不同,在叙述形式上也有差异。这种定义方法,能用已知的种概念的内涵来揭示被定义概念的内涵。揭示了概念的内涵,既准确又明了,有助于建立概念之间的联系,使知识系统化,因此,在中学数学概念的定义中应用较多3、发生式定义法发生定义法(也称构造

11、性定义法):通过被定义概念所反映对象发生过程,或形成的特征的描述来揭示被定义概念的本质属性的定义方法称发生定义法。这种定义法是“种+类差”定义的一种特殊形式。定义中的类差是描述被定义概念的发生过程或形成的特征,而不是揭示被定义概念的特有的本质属性。例如,平面(空间)上与定点等距离的点的轨迹叫做圆(球)此外,中学数学中对圆柱、圆锥、圆台、微分、积分、坐标系等概念也都是采用的发生式定义法又如:平面内与两个定点的距离的和等于定长的点的轨迹叫做椭圆围绕一中心点或轴转动,同时又逐渐远离的动点轨迹称为螺线一直杆与圆相切作无滑动的滚动,此直杆上一定点的轨迹称为圆的渐开线设 是试验E中的一个事件,若将E重复进

12、行n次,其中A发生了 次,则称为n次试验中事件A发生的频率在一定条件下,当试验次数越来越多时,事件A出现的频率逐步稳定于某一固定的常数P,称P为事件A出现的概率由此可知,只要有人类的数学活动,就有概念的发生式定义4、逆式定义法这是一种给出概念外延的定义法,又叫归纳定义法例如,整数和分数统称为有理数;正弦、余弦、正切和余切函数叫做三角函数;椭圆、双曲线和抛物线叫做圆锥曲线;逻辑的和、非、积运算叫做逻辑运算等等,都是这种定义法5、约定性定义法由于实践需要或数学自身发展的需要而被指定的数学概念在实践活动中,人们发现一些概念非常重要,便指明这些概念,以便数学活动中使用比如一些特定的数:圆周率、自然对数

13、的底e等;某些重要的值:平均数、频数、方差等;某类数学活动的概括:比如代数指研究有限多元素有限次运算的数学活动;几何指研究空间及物体在空间结构中结构与形式的数学活动;随机事件指在社会和自然界中,相同条件下,可能发生也可能不发生,但在大量重复试验中其出现的频率呈现稳定性的事情;概率指随机事件发生的可能性大小的数学度量;等等同时,数学概念有时是数学发展所需要约定的如零次幂的约定,模为零的向量规定为零向量,模为1的向量规定为单位向量又如矢量积的方向由右手法则规定数学教学中应向学生灌输这样一种观念,即数学概念是可以约定的(其更深刻的含义是数学可以创造)约定是简约思想的结果,它使得数学因为有了这样的约定

14、而运算简便约定不是惟一的,但应具有合理性或符合客观事物的规律如规定矢量积的方向按左手法则也不是不可以的约定不是随意针对的,一般只约定那些有重要作用的概念,如约定当n趋于无限大时的极限为自然对数的底e,因为这个数对计算十分重要6、刻画性定义 刻画性定义法亦称描述性定义法,数学中那些体现运动、变化、关系的概念经严格地给予表述(逾越直觉描述阶段),这些概念即属于刻画性定义比如等式函数、数列极限、函数极限等概念函数概念:设D是实数集的子集,如果对D内每一个,通过给定的法则 ,有惟一一个实数y与此 对应,称是定义在D上的一元实值函数,记为 概念中刻画了变量y与变量的关系 数列极限概念:对于数列 和一个数

15、 ,如果对任意给定的正数,都存在一个自然数 ,对一切自然数n, ,成立 ,称数n是数列 当n趋于无限大时的极限,记为 概念中刻画了 与 “要多么接近就可以多么接近(只要 )”的程度,使“ 无限接近 ”的直觉说法上升到严格水平函数极限概念:对于在 附近有定义的函数和一个数A,如果对任意给定的正数 ,都存在一个正数,对定义域中的x只要 ,成立 ,称数 是 当 趋近于 时的极限,记为,概念中刻画了 与A“要多接近就可以有多接近(只要)”的程度,是严格的数学概念。7、过程性定义有些复杂的数学概念是由在实践基础上的数学活动造就的,这样的概念由过程来引导例如:导数:设y=f(x) 在点(x0,f(x0)附

16、近有定义当自变量x 取得改变量x (x0),函数取得相应改变量y=y-y0,比值,当时的极限存在,这个极限值就称作的导数,记作.导数概念通过“作改变量作商求极限”的过程获得定积分:设有界函数 定义在 上在 中插入分点: 取 ,作和 令当 时,和 的极限存在,这个极限值称作 在 上的定积分定积分概念通过“分割 (插入了分点)一作和一求极限”的过程获得此外,数学中的概念还有其他给出方式如n维向量空间的定义:“n为有序实数组( )的全体,并赋予加法与数乘的运算( )+”它是二维向量空间 的类比推广再如“群”和“距离空间”的概念,则是用一组公理来定义的公理法定义的方式多用于高等数学,中学中涉及得很少此

17、外,中学数学中还有递推式定义法(如阶行列式、n阶导数、n重积分的定义),借助另一对象来进行定义(如借助指数概念定义对数概念)等等上述分类是大致的,学习概念的定义,并不在于区分它究竟属于那种定义方式,而在于理解概念的内涵,把握概念的外延,应用它们去学习数学知识和解决有关问题。为了正确地给概念下定义,定义要符合下列基本要求:(1)定义应当相称即定义概念的外延与被定义概念的外延必须是相同的,既不能扩大也不能缩小即应当恰如其分,既不宽也不窄例如,无限不循环小数,叫做无理数而以无限小数来定义无理数(过宽),或以除不尽方根的数来定义无理数(过窄)显然,这都是错误的(2)定义不能循环即在同一个科学系统中,不能以A概念来定义B概念,而同时又以B概念来定义A概念例如,的角叫做直角,直角的九十分之一,叫做1度,这就发生循环了(3)定义应清楚、简明,一般不用否定的形式和未知的概念例如,笔直笔直的线,叫做直线(不清楚);两组对边互相平行的平面平行四边形(不简明);不是有理数的数,叫做无理数(否定形式);对初中生来说,在复数a+ i中,虚部60的数,叫做实数(应用未知概念)等,这些都是不妥的

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 实用文档资料库 > 策划方案

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。