1、抽象函数经典综合题33例(含详细解答)抽象函数,是指没有具体地给出解析式,只给出它的一些特征或性质的函数,抽象函数型综合问题,一般通过对函数性质的代数表述,综合考查学生对于数学符号语言的理解和接受能力,考查对于函数性质的代数推理和论证能力,考查学生对于一般和特殊关系的认识,是考查学生能力的较好途径。抽象函数问题既是教学中的难点,又是近几年来高考的热点。本资料精选抽象函数经典综合问题33例(含详细解答)1.定义在R上的函数y=f(x),f(0)0,当x0时,f(x)1,且对任意的a、bR,有f(a+b)=f(a)f(b),(1) 求证:f(0)=1;(2) 求证:对任意的xR,恒有f(x)0;(
2、3)证明:f(x)是R上的增函数;(4)若f(x)f(2x-x2)1,求x的取值范围。解 (1)令a=b=0,则f(0)=f(0)2f(0)0 f(0)=1(2)令a=x,b=-x则 f(0)=f(x)f(-x) 由已知x0时,f(x)10,当x0,f(-x)0又x=0时,f(0)=10对任意xR,f(x)0(3)任取x2x1,则f(x2)0,f(x1)0,x2-x10 f(x2)f(x1) f(x)在R上是增函数(4)f(x)f(2x-x2)=fx+(2x-x2)=f(-x2+3x)又1=f(0),f(x)在R上递增由f(3x-x2)f(0)得:3x-x20 0x2时,4.已知f(x)在(1
3、,1)上有定义,f()1,且满足x,y(1,1)有f(x)f(y)f()证明:f(x)在(1,1)上为奇函数;对数列x1,xn1,求f(xn);求证()证明:令xy0,2f(0)f(0),f(0)0令yx,则f(x)f(x)f(0)0f(x)f(x)0 f(x)f(x)f(x)为奇函数 ()解:f(x1)f()1,f(xn1)f()f()f(xn)f(xn)2f(xn)2即f(xn)是以1为首项,2为公比的等比数列f(xn)2n1()解: 而 5.已知函数,满足:对任意都有;(1)试证明:为N上的单调增函数;(2),且,求证:;(3)若,对任意,有,证明:.证明:(1)由知,对任意,都有,由于
4、,从而,所以函数为上的单调增函数. (2)由(1)可知都有f(n+1)f(n),则有f(n+1)f(n)+1 f(n+1)-f(n), f(n)-f(n-1) f(2)-f(1)f(1)-f(0)由此可得f(n)-f(0)n f(n)n+1命题得证 (3)(3)由任意,有得 由f(0)=1得m=0 则f(n+1)=f(n)+1,则f(n)=n+1 6.已知函数的定义域为,且同时满足:(1)对任意,总有;(2)(3)若且,则有.(I)求的值;(II)求的最大值;(III)设数列的前项和为,且满足.求证:.解:(I)令,由(3),则由对任意,总有 (II)任意且,则 (III) ,即。 故即原式成
5、立。 7. 对于定义域为的函数,如果同时满足以下三条:对任意的,总有;若,都有成立,则称函数为理想函数(1) 若函数为理想函数,求的值;(2)判断函数是否为理想函数,并予以证明;(3) 若函数为理想函数,假定,使得,且,求证解:(1)取可得又由条件,故(2)显然在0,1满足条件;-也满足条件 若,则 ,即满足条件, 故理想函数 (3)由条件知,任给、0,1,当时,由知0,1,若,则,前后矛盾;若,则,前后矛盾故 8. 已知定义在R上的单调函数,存在实数,使得对于任意实数,总有恒成立。()求的值;()若,且对任意正整数,有, ,求数列an的通项公式; ()若数列bn满足,将数列bn的项重新组合成
6、新数列,具体法则如下:,求证:。解:()令,得,令,得,由、得,又因为为单调函数,()由(1)得,()由Cn的构成法则可知,Cn应等于bn中的n项之和,其第一项的项数为1+2+(n1)+1=+1,即这一项为2+11=n(n1)+1Cn=n(n1)+1+n(n1)+3+n(n1)+2n1=n2(n1)+=n3 当时,解法2:9.设函数是定义域在上的单调函数,且对于任意正数有,已知.(1)求的值;(2)一个各项均为正数的数列满足:,其中是数列的前n项的和,求数列的通项公式;(3)在(2)的条件下,是否存在正数,使 对一切成立?若存在,求出M的取值范围;若不存在,说明理由.解:(1),令,有,.再令
7、,有, (2),又是定义域上单调函数, 当时,由,得,当时, 由,得,化简,得,即,数列为等差数列. ,公差.,故. (3),令=,而. =, ,数列为单调递增函数,由题意恒成立,则只需=, ,存在正数,使所给定的不等式恒成立,的取值范围为.10.定义在R上的函数f(x)满足,且时,f(x)0时,0f(x)1。(1)求证:f(0)=1,且当x1;(2)求证:f(x)在R上单调递减;(3)设集合,若,求a的取值范围。解:(1)令m=1,n=0,得f(1)= f(1)f(0)又当x0时,0 f(x)1,所以f(0)=1设x0令m=x,n=x,则f(0)= f(x)f(x)所以f(x)f(x)=1又
8、0 f(x)0恒成立所以所以所以f(x2)0使,试问f(x)是否为周期函数?若是,指出它的一个周期;若不是,请说明理由。解:(1)令a=b=0则f(0)+ f(0)=2 f(0)f(0)所以2 f(0)f(0)1=0又因为,所以f(0)=1(2)令a=0,b=x,则f(x)+ f(x)=2 f(0)f(x)由f(0)=1可得f(x)= f(x)所以f(x)是R上的偶函数。(3)令,则因为所以f(x+c)+ f(x)=0所以f(x+c)= f(x)所以f(x+2c)= f(x+c)= f(x)= f(x)所以f(x)是以2c为周期的周期函数。13.已知函数f(x)的定义域关于原点对称,且满足:(
9、1)(2)存在正常数a,使f(a)=1求证:(1)f(x)是奇函数;(2)f(x)是周期函数,并且有一个周期为4a证明:(1)设,则所以函数f(x)是奇函数。(2)令,则即解得:f(2a)=0所以所以因此,函数f(x)是周期函数,并且有一个周期为4a。14.已知对一切,满足,且当时,求证:(1)时,(2)在R上为减函数。 证明:对一切有。 且,令,得, 现设,则, 而 , 设且, 则 , 即为减函数。15.已知函数是定义在上的减函数,且对一切实数x,不等式恒成立,求k的值。 分析:由单调性,脱去函数记号,得 由题意知(1)(2)两式对一切恒成立,则有 16.设定义在上的函数对于任意都有成立,且
10、,当时,。(1)判断f(x)的奇偶性,并加以证明;(2)试问:当-20032003时,是否有最值?如果有,求出最值;如果没有,说明理由;(3)解关于的不等式,其中.分析与解:令x=y=0,可得f(0)=0令y=-x,则f(0)=f(x)+f(x),f(x)= f(x),f(x)为奇函数设3x1x23,y=x1,x=x2则f(x2x1)=f(x2)+f(x1)=f(x2)f(x1),因为x0时,f(x)0,故f(x2x1)0,即f(x2)f(x1)0。f(x2)f(x1)、f(x)在区间2003、2003上单调递减x=2003时,f(x)有最大值f(2003)=f(2003)=f(2002+1)
11、=f(2002)+f(1)=f(2001)+f(1)+f(1)=2003f(1)=4006。x=2003时,f(x)有最小值为f(2003)= 4006。由原不等式,得f(bx2) f(b2x)f(x) f(b)。即f(bx2)+f(b2x)2f(x)+f(b)f(bx2b2x)2 f(xb),即fbx(xb)f(xb)+f(xb)fbx(xb)f2 f(xb)由f(x)在xR上单调递减,所以bx(xb)2(xb),(xb)(bx2) 0b22, b或b当b时,b,不等式的解集为当b时,b,不等式的解集为当b=时,不等式的解集为当b=时,不等式解集为17.已知定义在上的函数满足:(1)值域为,
12、且当时,;(2)对于定义域内任意的实数,均满足:试回答下列问题:()试求的值;()判断并证明函数的单调性;()若函数存在反函数,求证:分析与解:()在中,令,则有即:也即:由于函数的值域为,所以,所以()函数的单调性必然涉及到,于是,由已知,我们可以联想到:是否有?()这个问题实际上是:是否成立?为此,我们首先考虑函数的奇偶性,也即的关系由于,所以,在中,令,得所以,函数为奇函数故()式成立所以,任取,且,则,故且所以,所以,函数在R上单调递减()由于函数在R上单调递减,所以,函数必存在反函数,由原函数与反函数的关系可知:也为奇函数;在上单调递减;且当时,为了证明本题,需要考虑的关系式在()式
13、的两端,同时用作用,得:,令,则,则上式可改写为:不难验证:对于任意的,上式都成立(根据一一对应)这样,我们就得到了的关系式这个式子给我们以提示:即可以将写成的形式,则可通过裂项相消的方法化简求证式的左端事实上,由于,所以,所以,点评:一般来说,涉及函数奇偶性的问题,首先应该确定的值18.已知函数f(x)对任意实数x、y都有f(xy)f(x)f(y),且f(1)1,f(27)9,当时,。(1)判断f(x)的奇偶性;(2)判断f(x)在0,)上的单调性,并给出证明;(3)若,求a的取值范围。分析:由题设可知f(x)是幂函数的抽象函数,从而可猜想f(x)是偶函数,且在0,)上是增函数。解:(1)令
14、y1,则f(x)f(x)f(1),f(1)1,f(x)f(x),f(x)为偶函数。(2)设,时,f(x1)f(x2),故f(x)在0,)上是增函数。(3)f(27)9,又,又,故。19.设函数的定义域为全体R,当xbc1,且a、b、c成等差数列,求证:;(3)(本小题只理科做)若f(x) 单调递增,且mn0时,有,求证:解:(1)取x=1,q=2,有若存在另一个实根,使得(2),则0,又a+c=2b,ac-b=即acb(3)又令m=b,n=,b且q则f(m)+f(n)=(qf(b)=f(mn)=0且即4m=,由0n0, g(1) =2,g(x) 是增函数. g(m) g(n)= g(m+n)(
15、m、nR) 求证: f(x)是R上的增函数解:设x1x2 g(x)是R上的增函数, 且g(x)0 g(x1) g(x2) 0 g(x1)+1 g(x2)+1 0 0 - 0 f(x1)- f(x2)=- =1-(1-) =-0 f(x1) f(x2) f(x)是R上的增函数25.定义在R+上的函数f(x)满足: 对任意实数m,f(xm)=mf(x); f(2)=1.(1)求证:f(xy)=f(x)+f(y)对任意正数x,y都成立;(2)证明f(x)是R+上的单调增函数;(3)若f(x)+f(x-3)2,求x 的取值范围.解:(1)令x=2m,y=2n,其中m,n为实数,则f(xy)=f(2m+
16、n)=(m+n)f(2)=m+n.又f(x)+f(y)=f(2m)+f(2n)=mf(2)+nf(2)=m+n,所以f(xy)=f(x)+f(y)故f(x1)f(x2),即f(x)是R+上的增函数.(3)由f(x)+f(x-3)2及f(x)的性质,得fx(x-3)2f(2)=f(2)解得 30时,f(x)1,且对任意x,yR,有f(x+y)=f(x)f(y),f(1)=2解:(1)先证f(x)0,且单调递增,因为f(x)=f(x+0)=f(x)f(0),x0时f(x)1,所以f(0)=1.f(x)=f(x-xo)+xo=f(x-xo)f(xo)=0,与已知矛盾,故f(x)0任取x1,x2R且x
17、10,f(x2-x1)1,所以f(x1)-f(x2)=f(x2-x1)+x1-f(x1)=f(x2-x1)f(x1)-f(x1)=f(x1)f(x2-x1)-10.所以xR时,f(x)为增函数. 解得:x|1x2(2)f(1)=2,f(2)=2,f(3)=8,原方程可化为:f(x)2+4f(x)-5=0,解得f(x)=1或f(x)=-5(舍)由(1)得x=0.28.定义域为R的函数f(x)满足:对于任意的实数x,y都有f(x+y)=f(x)+f(y)成立,且当x0时f(x)0恒成立.(1)判断函数f(x)的奇偶性,并证明你的结论;(2)证明f(x)为减函数;若函数f(x)在-3,3)上总有f(
18、x)6成立,试确定f(1)应满足的条件;解:(1)由已知对于任意xR,yR,f(x+y)=f(x)+ f(y)恒成立令x=y=0,得f(0+0)= f(0)+ f(0),f(0)=0令x=-y,得f(x-x)= f(x)+ f(-x)=0对于任意x,都有f(-x)= - f(x)f(x)是奇函数.(2)设任意x1,x2R且x1x2,则x2-x10,由已知f(x2-x1)0(1)又f(x2-x1)= f(x2)+ f(-x1)= f(x2)- f(x1)(2)由(1)(2)得f(x1)f(x2),根据函数单调性的定义知f(x0在(-,+)上是减函数.f(x)在-3,3上的最大值为f(-3).要使
19、f(x)6恒成立,当且仅当f(-3)6,又f(-3)= - f(3)= - f(2+1)=- f(2)+ f(1)= - f(1)+ f(1)+ f(1)= -3 f(1),f(1)-2.(3) f(ax2)- f(x) f(a2x)- f(a)f(ax2)- f(a2x)nf(x)- f(a)f(ax2-a2x)nf(x-a)(10分)由已知得:fn(x-a)=nf(x-a)f(ax2-a2x)fn(x-a)f(x)在(-,+)上是减函数ax2-a2xn(x-a).即(x-a)(ax-n)0,a0,(x-a)(x-)0,(11分)讨论:(1)当a0,即a-时,原不等式解集为x | x或xa;
20、(2)当a=0即a=-时,原不等式的解集为;(3)当a0时,即-a0时,原不等式的解集为x | xa或x29.已知是定义在R上的不恒为零的函数,且对于任意的都满足:()求的值;()判断的奇偶性,并证明你的结论;()若,求数列的前项的和解:()取a=b=0得f(0)=0,取a=b=1得f(1)=0, ()取a=b=-1得f(1)=-2f(-1),所以f(-1)=0, 取a=x,b=-1得f(-x)=-f(x)+xf(-1)=-f(x), 所以f(x)是奇函数; ()30(2005年广东省高考试题)设函数在上满足,且在闭区间0,7上,只有()试判断函数的奇偶性;()试求方程=0在闭区间-2005,
21、2005上的根的个数,并证明你的结论解:由f(2-x)=f(2+x),f(7-x)=f(7+x)得函数的对称轴为,从而知函数不是奇函数,由,从而知函数的周期为又,故函数是非奇非偶函数;(II)由(II) 又故f(x)在0,10和-10,0上均有有两个解,从而可知函数在0,2005上有402个解,在-2005.0上有400个解,所以函数在-2005,2005上有802个解.31. 设定义在R上且对任意的有,求证:是周期函数,并找出它的一个周期。 分析:这同样是没有给出函数表达式的抽象函数,其一般解法是根据所给关系式进行递推,若能得出(T为非零常数)则为周期函数,且周期为T。 证明: 得 由(3)
22、得 由(3)和(4)得。 上式对任意都成立,因此是周期函数,且周期为6。32.设是定义在上的偶函数,其图象关于直线对称。对任意都有。 (I)设求; (II)证明是周期函数。 解析:(I)解略。 (II)证明:依题设关于直线对称 故 又由是偶函数知 将上式中以代换,得 这表明是上的周期函数,且2是它的一个周期 是偶函数的实质是的图象关于直线对称 又的图象关于对称,可得是周期函数33.己知函数f(x)的定义域关于原点对称,且满足以下三条件:当是定义域中的数时,有;f(a)1(a0,a是定义域中的一个数);当0x2a时,f(x)0。试问:(1)f(x)的奇偶性如何?说明理由。(2)在(0,4a)上,
23、f(x)的单调性如何?说明理由。解:(1)f(x)的定义域关于原点对称,且是定义域中的数时有,在定义域中。,f(x)是奇函数。(2)设0x1x22a,则0x2x12a,在(0,2a)上f(x)0,f(x1),f(x2),f(x2x1)均小于零,进而知中的,于是f(x1) f(x2),在(0,2a)上f(x)是增函数。又,f(a)1,f(2a)0,设2ax4a,则0x2a2a,于是f(x)0,即在(2a,4a)上f(x)0。设2ax1x24a,则0x2x12a,从而知f(x1),f(x2)均大于零。f(x2x1)0,即f(x1)f(x2),即f(x)在(2a,4a)上也是增函数。综上所述,f(x)在(0,4a)34、已知函数f(x)对任意实数x、y都有f(xy)f(x)f(y),且f(1)1,f(27)9,当时,。(1)判断f(x)的奇偶性;(2)判断f(x)在0,)上的单调性,并给出证明;(3)若,求a的取值范围。解:(1)令y1,则f(x)f(x)f(1),f(1)1,f(x)f(x),f(x)为偶函数。(2)设,时,f(x1)f(x2),故f(x)在0,)上是增函数。(3)f(27)9,又,又,故