1、浙江省2017年中考数学真题分类汇编: 代数式及运算(解析版)一、单选题(共7题;共14分)1、(2017宁波)下列计算正确的是 ( ) A、B、C、D、2、(2017衢州)下列计算正确的是( ) A、 B、C、D、3、(2017金华)在下列的计算中,正确的是( ) A、m3+m2=m5B、m5m2=m3C、(2m)3=6m3D、(m+1)2 =m2+14、(2017台州)下列计算正确的是( ) A、B、C、D、5、(2017宁波)要使二次根式 有意义,则 的取值范围是 ( ) A、B、C、D、6、(2017丽水)化简 的结果是( ) A、x+1B、x-1C、x2-1D、7、(2017宁波)一
2、个大矩形按如图方式分割成九个小矩形,且只有标号为和的两个小矩形为正方形在满足条件的所有分割中,若知道九个小矩形中n个小矩形的周长,就一定能算出这个在大矩形的面积,则n的最小值是 ( )A、3B、4C、5D、6二、填空题(共11题;共11分)8、(2017嘉兴)分解因式: _ 9、(2017绍兴)分解因式: =_. 10、(2017金华)分解因式: _ 11、(2017台州)因式分解: _ 12、(2017温州)分解因式:m2+4m=_ 13、(2017丽水)分解因式:m2+2m=_. 14、(2017金华)若 _ 15、(2017丽水)已知a2+a=1,则代数式3-a-a2的值为_. 16、(
3、2017衢州)二次根式 中字母 的取值范围是_ 17、(2017湖州)把多项式 因式分解,正确的结果是_ 18、(2017湖州)要使分式 有意义, 的取值应满足_ 三、解答题(共4题;共30分)19、(2017嘉兴)计算题。 (1)计算: ; (2)化简: 20、(2017台州)先化简,再求值: ,其中 21、(2017宁波)先化简,再求值: ,其中 22、(2017温州)计算题 (1)计算:2(3)+(1)2+ ; (2)化简:(1+a)(1a)+a(a2) 答案解析部分一、单选题1、【答案】C 【考点】同底数幂的乘法,幂的乘方与积的乘方,合并同类项法则和去括号法则 【解析】【解答】解:A.
4、a2与a3不是同类项,不能合并,故错误; B.原式=4a2.故错误; C.原式=a2+3=a5.故正确; D.原式=a6.故错误;故选C。【分析】利用同底数幂相乘,底数不变,指数相加;幂的乘方,底数不变,指数相乘;积的乘方,将每个数分别乘方;以及合并同类项法则即可判断正确答案。 2、【答案】B 【考点】同类项、合并同类项,同底数幂的乘法,幂的乘方与积的乘方,同底数幂的除法 【解析】【解答】解:A.2a、b不是同类项,不能合并,故选项错误; B.根据积的乘方的性质:=,故选项正确; C.同底数幂的除法,底数不变,指数相减,故选项错误; D.同底数幂的乘法,底数不变,指数相加,故选项错误;故选B.
5、【分析】同底数幂的乘法,底数不变,指数相加; 同底数幂的除法,底数不变,指数相减;再根据合并同类项的法则,积的乘方的性质,即可得出答案。 3、【答案】B 【考点】同底数幂的乘法,幂的乘方与积的乘方,同底数幂的除法,完全平方公式 【解析】【解答】解:A.不是同底数幂的乘法,指数不能相加,故A错误。B.同底数幂的除法,低数不变,指数相减,故B正确。C.幂的乘方底数不变,指数相乘,故C错误。D.完全平方和公式,前平方,后平方,前后乘2在中央,故D错误。【分析】根据同底数幂的除法底数不变指数相减;幂的乘方低数不变指数相乘;同底数幂的乘法,底数不变,指数相加。完全平方和公式,对各个选项逐一分析后求出答案
6、。 4、【答案】D 【考点】多项式乘多项式,完全平方公式,平方差公式 【解析】【解答】解:A.原式=a2-4.故错误; B.原式=a2-a-2.故错误; C.原式=a2+2ab+b2.故错误; D.原式=a2-2ab+b2.故正确;故选D。【分析】利用平方差和完全平方公式,多项式的乘法即可判断正确答案。 5、【答案】D 【考点】二次根式有意义的条件 【解析】【解答】解:依题可得:x-30.x3.故选D.【分析】根据二次根式有意义的条件:被开方数大于或等于0即可得出答案. 6、【答案】A 【考点】分式的混合运算 【解析】【解答】解: = .故选A.【分析】分式相加减,可将分母化为一致,即把第二项
7、的 ,即转化为同分母的分式减法,再将结果化成最简分式. 7、【答案】A 【考点】推理与论证 【解析】【解答】解:要算出这个在大矩形的面积,就需要知道大矩形的长和宽.如图:假设已知小矩形的周长为4x,小矩形周长为2y,小矩形周长为2z;则可得出的边长以及和的邻边和,分别为x、y、z;设小矩形的周长为4a,则的边长为a,可得、都有一边长为a则和的另一条边长分别为:ya,za,故大矩形的边长分别为:ya+x+a=y+x,za+x+a=z+x,故大矩形的面积为:(y+x)(z+x),其中x,y,z都为已知数,故n的最小值是3故选:A【分析】根据题意结合正方形的性质及正方形及矩形周长与各边长的关系来进行
8、求解,进而得出符合题意的答案 二、填空题8、【答案】b(a-b) 【考点】因式分解-提公因式法 【解析】【解答】解:原式=b(a-b).故答案为b(a-b).【分析】可提取公因式“b”. 9、【答案】【考点】因式分解-运用公式法 【解析】【解答】解:原式= = 故答案为 .【分析】观察整式可得,应选提取公因式y,再运用平方差公式分解因式. 10、【答案】(x+2)(x-2) 【考点】平方差公式,因式分解-运用公式法 【解析】【解答】解:-4=(x+2)(x-2);【分析】直接利用平方差公式进行因式分解即可。 11、【答案】x(x+6) 【考点】因式分解-提公因式法 【解析】【解答】解:原式=x
9、(x+6).故答案为x(x+6).【分析】根据因式分解的提公因式法即可得出答案. 12、【答案】m(m+4) 【考点】因式分解-提公因式法 【解析】【解答】解:m2+4m=m(m+4) 故答案为:m(m+4)【分析】直接提提取公因式m,进而分解因式得出答案 13、【答案】m(m+2) 【考点】因式分解-提公因式法 【解析】【解答】解:原式=m(m+2).故答案为m(m+2).【分析】先提取公因式. 14、【答案】【考点】等式的性质 【解析】【解答】解:根据等式的性质,两边都加上1,+1=+1,则=,故答案为:.【分析】根据等式的性质1,等式两边都加上1,等式仍然成立可得出答案。 15、【答案】
10、2 【考点】代数式求值 【解析】【解答】解:a2+a=1,3-a-a2=3-(a+a2)=3-1=2.故答案为2.【分析】可由a2+a=1,解出a的值,再代入3-a-a2;或者整体代入3-(a+a2)即可答案. 16、【答案】a2 【考点】二次根式有意义的条件 【解析】【解答】解:依题可得:a-20, 解得:a2.故答案为a2.【分析】根据二次根式有意义的条件得出不等式,解不等式即可。 17、【答案】x(x-3) 【考点】因式分解-提公因式法 【解析】【解答】解:原式=x(x-3).故答案为:x(x-3).【分析】根据因式分解的提公因式法即可得出答案. 18、【答案】x2 【考点】分式有意义的
11、条件 【解析】【解答】解:依题可得:x-20.x2.故答案为x2.【分析】根据分式有意义的条件分母不为0即可得出答案. 三、解答题19、【答案】(1)解:原式=3+=5.(2)解:原式=m2-4-m2=-4。 【考点】实数的运算,整式的混合运算 【解析】【分析】(1)运算中注意符号的变化,且非零数的-1次方就是它的倒数.(2)运用整式乘法中的平方差公式计算,再合并同类项. 20、【答案】解:原式=. =x=2017,原式= =【考点】分式的化简求值 【解析】【分析】根据分式的加减乘除运算法则即可化简该分式,将x的值代入即可得出答案. 21、【答案】解:原式=4-x2+x2+4x-5. =4x-1.x=.原式=4-1. =6-1. =5. 【考点】多项式乘多项式,平方差公式 【解析】【分析】根据平方差公式和多项式乘以多项式的法则先化简再求值即可得出答案。 22、【答案】(1)解:原式=6+1+2 =5+2 ;(2)解:原式=1a2+a22a=12a 【考点】实数的运算,单项式乘多项式,平方差公式 【解析】【分析】(1)原式先计算乘方运算,化简二次根式,再计算乘法运算,最后算加减运算即可得到结果(2)运用平方差公式即可解答