1、波利亚解题心得体会一道题,自己总也想不出解法,而老师却能给出了一个绝妙的解法,这时你最希望知道的是“老师是怎么想出这个解法的?”如果这个解法不是很难时,“我自己完全可以想出,但为什么我没有想到呢?”有人听到“数学”就会头痛,为什么又会有人热衷于解题呢?在解答这道或那道不涉及物质利益的题目的愿望背后,也许有着一个更深切的好奇心,一个要求理解解答的各种途径和方法、动机和步骤的愿望,当我们绞尽脑汁想的题突然被我们解答出来,那种心情只有真正经历过的人才懂。不管是我们自己或者我们去帮助别人,我们不仅要尽力去理解这道或那道题目的解答,而且要理解这个解答的动机和步骤,并尽力向别人解释这些动机和步骤。在老师上
2、课的时候,为什么很多学生能听懂例题却不能独立思考得出问题的答案,总是要等到提示、点拨后才恍然大悟呢?这是因为学生不懂得思考的方法,大多数老师讲题总是“头痛医头,脚痛医脚”,只有实战经验,没有形成方法论。但是学生要的不应该是一道道具体的题目,而是面对任何一道题目时的思维方法。这也就是波利亚要告诉我们的。波利亚致力于解题的研究,为了回答“一个好的解法是如何想出来的”这个令人困惑的问题,他专门研究了解题的思维过程,并把研究所得写成怎样解题一书。这本书的核心是他分解解题的思维过程得到的一张怎样解题表。在这张包括“弄清问题”,即未知量是什么?已知数据是什么?条件是什么?条件有可能满足吗?条件是否足以确定
3、未知量?或者它不够充分?或者多余?或者矛盾?“拟定计划”,找出已知数据与未知量之间的联系,如果找不出直接联系,你可能不得不考虑辅助问题。最终得出一个求解计划。“实现计划”和“回顾”,我自己认为回顾在解题中是很重要的一个步骤,很多同学却不以为然,你能检验这个结果吗?你能检验这个论证吗?你能以不同的方式推导这个结果吗?你能一眼就看出它来吗?你能在别的什么题目中利用这个结果或这种方法吗?回顾能让我们更加理解这一类题目的解题方法。 解答其实也是一种创造,当找到一个方法解决了一道题目,我们同时也应该思考 “你能在别的什么题目中利用这个结果或这种方法吗?”有时我们要举一反三,改造一道题目。基本的方法有:普
4、遍化、特殊化、类比、分解和重组等。大二的时候修了初等数论这一门课程,它主要研究整数最基本的性质,是一门基础课程,蕴含了丰富的数学思想方法(整体化、转化、构造、反证) ,上这门课时,老师讲的都能听懂,课后解题却不知所措。还有一些需要证明的习题也是今后能够用到的结论,却不懂得如何运用和解答。自己不去反思、去领悟、去归纳,纵使心中方法无数,下笔也只能低头苦思。 “好题目和某种蘑菇有点相似之处:它们都成串生长。找到一个以后,我们应该四处看看,很有可能在很近的地方又能找到更多的。”乔治波利亚说过:“解题可以是人的最富有特征的活动,假如你想要从解题中得到最大的收获,你就应该在所做的题目当中去找出它的特征,那些特征在你以后求解其他问题时,能起到指导的作用。 ”做一件事情的主体永远是自己,对于学习数学来说,只有你自己的思维活跃起来了,在学习中寻找到属于自己的快乐,有了成功的体验,对数学知识本身才能产生内在的兴趣。