1、钻井计算公式(精典)1.卡点深度:L=eEF/105P=Ke/P式中:L-卡点深度 米e-钻杆连续提升时平均伸长 厘米E-钢材弹性系数=2.1106公斤/厘米2F-管体截面积。 厘米2P-钻杆连续提升时平均拉力 吨K-计算系数K=EF/105=21F钻具被卡长度l:l=H-L式中H-转盘面以下的钻具总长 米注:K值系数5=715(9.19)例:某井在井深2000米时发生卡钻,井内使用钻具为壁厚11毫米的59/16钻杆,上提平均拉力16吨,钻柱平均伸长32厘米,求卡点深度和被卡钻具长度。解:L=Ke/P由表查出壁厚11毫米的59/16钻杆的K=957则:L=95732/16=1914米钻具被卡长
2、度:L=H-L=2000-1914=86米2、井内泥浆量的计算V=D2H/2或V=0.785D2H3、总泥浆量计算Q=q井+q管+q池+q备4、加重剂用量计算:W加=r加V原(r重-r原)/r加-r重式中:W加-所需加重剂的重量, 吨r原-加重前的泥浆比重 ,r重-加重后的泥浆比重r加-加重料的比重V原-加重前的泥浆体积 米3例:欲将比重为1.25的泥浆200米3,用比重为4.0的重晶石粉加重至1.40,需重晶石若干?解:根据公式将数据代入:4200(1.40-1.25)/4.0-1.40=46吨5.降低泥浆比重时加水量的计算q=V原(r原-r稀)/r稀-r水式中:q-所需水量 米3V原-原泥
3、浆体积 米3r稀-稀释后泥浆比重r水-水的比重(淡水为1)r原-原泥浆比重例:欲将比重1.30的泥浆150米3降至比重为1.17,需加淡水若干?解:根据公式代入数据:150(1.30-1.17)1/1.17-1=115米36、泥浆循环一周所需时间计算T=V井-V柱/60Q泵式中:T-泥浆循环一周的时间, 分V井-井眼容积, 升V柱-钻柱体积 升Q泵-泥浆泵排量 升/秒备注:V井=0.785D井2V柱=0.785(D外2-d内2)例题:井径81/2,使用壁厚为10毫米的41/2钻至1000米,泵的排量为21.4升/秒,问泥浆循环一周需时若干?解: V井=0.785(215.9)2=36591升V
4、柱=0.785(114.32-94.32)=3275升T= V井-V柱/60Q泵=36591-3275/6021.4=33316/1284=25.95分7、泥浆上返速度计算V返=12.7Q泵/D井2-d柱2式中:V返泥浆上返速度 米/秒Q泵-泥浆泵排量 升/秒D井-井径 厘米d柱-钻柱外径 厘米例题:某井井径为22厘米,钻具外径为11.4厘米,泥浆泵排量为25升/秒,问泥浆上返速度是多少?解:V返=12.7Q泵/D井2-d柱2=12.725/222-11.42=0.90米/秒8、漏失速度计算公式:V漏=Q漏/t时式中:V漏漏失速度 米3/小时Q漏-在某段时间内的漏失量 米3t时-漏失时间 小时
5、例题:某井在30分钟内共漏泥浆15.6米3问该井在这段时间内的漏失速度是多少?解:V漏=Q漏/t时=15.6/0.5=31.2米3/小时9、泵压计算公式:P=0.081Q2/0.96D4式中:P-泵压 MPa-使用密度 g/cm3Q-泥浆泵排量 l/sD-钻头水眼 毫米D=d12+d22+d32+.10.常用套管数据表尺寸钢级壁厚mm线密度Kg/m抗外挤抗内压抗拉最大载荷MPa安全系数最大载荷MPa安全系数最大载荷KN安全系数273.05J558.8960.322.474.422.310118.610244.5J558.9453.572.475.632.11094.510139.7P1109.
6、1729.728.62.4402.2/139.7N809.1729.723.52.4401.67062.811接头扣型尺寸:(1:内平 2:贯眼 3:正规)扣型公扣小端外径mm扣型母扣端部台肩内径mm231正规45.17230正规65.1231正规54.20230正规78.6331正规64.8330正规91.3431正规90.46430正规119.9531正规110.20530正规142.8631正规131.02630正规154.7221贯眼70.08220贯眼94.5321贯眼77.44320贯眼103.9421贯眼96.21420贯眼124.1521贯眼126.78520贯眼150.562
7、1贯眼150.37620贯眼174.1211内平60.35210内平74.45211内平71.44210内平88311内平84.93310内平103.19411内平114.30410内平134.94511内平141.29510内平164.3611内平168.28610内平190.612.常用单位换算表长度:1英寸(in)=25.4毫米(mm)=2.54厘米(cm)=0.0254米(m)1英尺(ft)=12英寸(in)=304.8毫米(mm)=30.48厘米(cm)=0.3048米(m)1码(yd)=3英尺(ft)=914.4毫米(mm)=91.44厘米(cm)=0.9144米(m)1里=150
8、丈=500米1丈=3.33米1尺=0.33米1寸=0.033米面积:1亩=666.6m13.常规井身结构开钻次序导管一开二开三开开窗侧钻井眼直径mm515444.5393.7311.15244.5215.9118套管直径mm478339.7273.05244.5177.8139.7101.6常用钻铤()177.8177.8(7in)203.2(8in) 158.8(6-1/4)177.8(7in) 158.8(6-1/4)158.8(61/4)101.6(4in)常用钻杆()127(5)127(5in)127(5in)127(5in)73(2-7/8in)备注常用常用常用特殊井14.常用钻铤尺
9、寸与钻头直径关系对照表钻头直径 mm(in)钻铤直径 mm(in)508.0(20)660.4(26)254.0(10)279.4(11)444.5(171/2)228.6(9)279.4(11)374.6(143/4)228.6(9)254.0(10)311.1(121/4)228.6(9)254.0(10)269.9(105/8) 177.8(7)228.6(9) 241.3(91/2)250.8(97/8)177.8(7)203.2(8)212.7(83/8)222.2(83/4)158.8(61/4)171.4(63/4)190.5(71/2)200.0(77/8)127.0(5)15
10、8.8(61/4)158.8(61/4)171.4(63/4)120.6(43/4), 127.0(5)142.9(55/8)152.4(6)104.7(41/8), 120.6(43/4)120.6(43/4)79.3(31/8), 88.9(31/2)公式:允许最小钻铤直径 = 2倍套管接箍外径 - 钻头直径有效井眼直径 =(钻头直径 +钻铤直径)20在大于215.9mm(81/2in)的井眼中,应采用塔式钻铤组合,钻铤柱中最下一段钻铤(一般应不少于1立柱)的外径应不小于这一允许最小外径,才能保证套管的顺利下入。15.井斜的原因钻井实践表明,井斜的原因是多方面的,如地质条件、钻具结构、钻进
11、技术措施以及设备安装质量等。但归纳起来,造成井斜的原因主要有两个方面:第一是钻头与岩石的相互作用方面的原因,即由于所钻地层的倾斜和非均质性使钻头受力不平衡而造成井斜;第二是钻柱力学方面的原因,即下部钻具受压发生弯曲变形使钻头偏斜并加剧钻头受力不平衡而造成井斜。1. 地层因素不同的地区、不同构造部位甚至不同的地层,井斜程度的显著差异表明地层因素往往是影响井斜的主要原因。在倾斜的层状地层中钻进时,由于在层面交界处的岩石不能长时间支持钻压而趋向沿垂直面发生破碎,因而井眼下倾一侧的层面上形成小斜台,它对钻头施加一个横向作用力,把它推向地层的上倾方向,从而引起井斜这就是所谓地层的“小变向器”作用。地层倾
12、角越大,成层性越强,钻压越大,这种作用也越大。沉积岩层不同方向的物性和强度是有差异的,一般来就,垂直层面方向岩石的强度低,可钻性高,所以在钻经这种地层时,钻头总是要保持沿这个破碎阻力最小的方向钻进的趋势,当地层呈倾斜状态时,这种自然趋势必然导致井斜。在软硬交错地层钻进时,可能产生突发性的严重井斜问题,当钻头从软地层进入硬地层时,由于钻头在A、B两侧的破碎阻力不均,使钻头的钻进方向向地层上倾方向倾斜,当钻头从硬地层进入软地层时,由于类似前面所述小变向器作用,迫使钻头沿地层上倾方向钻进。钻头在破碎呈倾斜的层状岩石时,牙齿在地层上倾方向一侧C形成较多的岩屑量。由于两侧破碎的不均衡产生的增斜力,也迫使
13、钻头改变方向。 地层造斜力及计算模式。 (1)或 (2)式中: 地层倾角,; 井斜角,; W 钻压,。地层本身并不存在造斜力,这里所说的地层造斜力,实质上是与地层特性及钻压密切相关的使井眼偏斜的一种特殊作用。用地层造斜力的概念解释和描述岩性比较稳定的地层和一个层段的井斜机理是比较合实际情况的,但不适用于软硬交界面上突然发生的严重井斜问题。2. 下部钻具弯曲的影响下部钻具在钻压作用下发生弯曲是引起井斜的另一个重要原因,其弯曲程度越严重,井斜也越严重,它对井斜的影响表现在两方面:下部钻具弯曲使钻头偏斜(相对于井轴),其钻进的方向偏离原井眼轴线,直接导致井斜。下部钻具弯曲,使钻压改变了作用方向即不再
14、沿井眼轴线方向施加给钻头,而是偏斜了一个角度 即钻头偏斜角,从而产生一个引起井斜的横向偏斜力FB。下部钻具组合自身的特性(包括与井眼的间隙)及钻压决定它的弯曲程度和对井斜的影响。16.常规钻具组合:1、一开钻具组合深度根据上部平原组的底界确定,一般为:50150m;444.5mm P2 177.8mm钻铤6根127mm钻杆133方钻杆钻井参数: 钻 压(kN) 转 速(r/min) 排 量(L/S) 泵压(MPa)10-20 6750 52、二开直井段钻具组合2.1 上部大井眼(1)不下技套时,采用塔式钻具组合:244.5mmP2177.8mm钻铤6根158.8mm无磁钻铤1根158.8mm钻
15、铤11 根127mm钻杆钻井参数: 钻 压(kN) 转 速(r/min) 排 量(L/S) 泵压(MPa) 50-80 67217 30 12(2)下技套时, 采用刚性满眼钻具组合:311.2mmP2203.2mm无磁钻铤1根203.2mm钻铤1根310mm扶正器203.2mm钻铤1根310mm扶正器203.2mm钻铤3根178.8mm钻铤9根+127mm钻杆 +133mm方钻杆钻井参数: 钻 压(kN) 转 速(r/min) 排 量(L/S) 泵压(MPa) 50-80 6740 12对可钻性差的海相地层:311.2HA537+ 311扶正器+ 228.6减震器+ 311扶正器228.6钻铤
16、1根+ 311扶正器+ 228.6钻铤2根+ 203.2钻铤7根+ 177.8钻铤6根+ 158.8上击器+ 127加重钻杆7根+ 127钻杆+133mm方钻杆钻井参数: 钻 压(kN) 转 速(r/min) 排 量(L/S) 泵压(MPa) 150-180 6740 12对可钻性差的海相地层:减震器的安放位置:直接安放在钻头之上减震效果最佳。随钻震击器的安放位置:其结构复杂、壁厚受限,不能长期处于压缩弯曲状态,应安放在钻柱受拉部位。一般安放在钻铤柱顶部效果最佳,如错误地放在中和点上,交替承受拉、压载荷会使其很快损坏。2.2 下部 8 1/2井眼直井段防斜钻具组合(1)钟摆防斜钻具(2)满眼防
17、斜钻具(3)偏心防斜钻具(4)光钻铤组合(1)钟摆防斜钻具215.9mmPDC钻头158.8mm无磁钻铤1根158.8mm钻铤1根214mm扶正器158.8mm钻铤1根214mm扶正器158.8mm钻铤18根127mm钻杆133mm方钻杆钻井参数:钻 压(kN) 转 速(r/min) 排 量(L/S) 泵压(MPa) 20-30 21730 12排量优选:一般215.9mm井眼上返流速调整到11.5m/s,244.5mm井眼上返流速调整到0.81m/s,311.2mm井眼上返流速调整到0.60.8m/s。力学理论基础:实际的井眼都是倾斜的,钻柱某点将和井壁接触,称为上切点。未加钻压时,作用在钻
18、头处侧向力只是钻头与上切点之间钻铤重量的横向分量,这个力称作钟摆力,使井眼趋于垂直;当施加钻压时,将在钻头处产生另一侧向力,此力使井眼偏离原来的方向。这二个力的合力决定了钻进方向。 钟摆钻具使用特点:钟摆钻具能用于不易井斜地区,在使用大钻铤条件下,保证较高钻压下钻出几乎垂直的井眼。比使用光钻铤钻具可增加钻压,而不会增大井斜。钟摆钻具也是一种有效的纠斜工具,并广泛应用于各油田。钟摆钻具使用特点:尽可能采用大尺寸钻铤加稳定器,形成的钟摆长,减斜效果好。在具体操作中应严格控制钻压,避免因加压过大使稳定器以下出现新切点致使钟摆失效;还应与处理地层交界面和加强划眼结合起来。缺点:在直井内无防斜作用,与光
19、钻铤一样由于刚度小不能有效控制井斜变化率。为满足易斜区快速钻井的要求还须使用其他类型的防斜钻具。钟摆钻具工作原理利用斜井内钻柱切点以下钻铤重量的横向分力把钻头压向井眼下方,以逐渐达到减小井斜的效果。这个横向分力的作用犹如钟摆一样,故称之为钟摆力。增加钟摆力的一个办法是尽可能使用较大尺寸的钻铤,这样钻铤不容易被压弯,切点位置相对较高,利于减斜。另一个办法是在此切点略高的位置上安装稳定器,以提高切点位置,增大减斜力。同时,也能减小钻头外侧倾角(指产生增斜效果的钻头倾角)。钟摆钻具设计要点和操作要求 操作中应严格控制钻压。同满眼钻具相比,钟摆钻具只能使用较小的钻压。对钟摆钻具来说,稳定器的安放位置十
20、分重要。如安放位置偏低则减斜力小,效果差;如安放位置偏高则稳定器以下钻铤会与井壁形成新切点,使钟摆钻具失效;因此钟摆钻具中稳定器的理想安放位置应在保证稳定器以下钻铤不与井壁接触的条件下尽量提高些。稳定器安放位置主要取决于钻铤尺寸、钻压大小和井眼斜度等。推荐的钟摆钻具组合稳定器的安放位置井眼直径 mm(in)稳定器高度 m339.7(13- 3/8)及以上36(四根钻铤单根)244.5(9-5/8311.1(12 -1/4)27(三根钻铤单根)193.7(75/8)244.5(9 5/8)18(两根钻铤单根)152.4(6) 及以下9(一根钻铤单根)注:每根钻铤单根长度按9m左右计 (2)满眼防
21、斜钻具215.9mm三牙轮钻头214mm扶正器158.8mm短钻铤(2-3m)1根214mm扶正器158.8mm无磁钻铤1根214mm扶正器158.8mm钻铤23根127mm钻杆133mm方钻杆钻井参数:钻 压(kN) 转 速(r/min) 排 量(L/S) 泵压(MPa) 150-180 6730 12适用范围满眼钻具适用于不易斜或较为易斜的地区(层)。满眼钻具是在石油及天然气钻井应用最为广泛的钻具组合之一。力学理论基础满眼钻具的防斜原理有二点:能产生较小的钻头倾角(相对于钟摆钻具而言);利用三点(三个稳定器)直线性来保证井眼的直线性和限制钻头的横向移动。 满眼钻具的设计要点和操作方法主要有
22、三点:保证下部钻铤有尽可能大的刚度;保证稳定器之间具有合适的长度;保证稳定器与井眼之间的间隙尽可能小。满眼钻具能承受较大钻压(相对于钟摆钻具),因而能获得较高的机械钻速。但满眼钻具在发生井斜后其纠斜效果不如钟摆钻具,此时需要起下钻换钟摆钻具纠斜。(3)偏心防斜钻具设计了两种组合两种方式: 双扶正器钟摆钻具组合215.9PDC钻头158.8mm钻铤1根177.8mm偏心短节+158.8mm钻铤1根+214mm扶正器158.8mm钻铤1根214mm扶正器158.8mm钻铤14根钻井参数:钻 压(kN) 转 速(r/min) 排 量(L/S) 泵压(MPa) 40-60 21730 12 针对偏心短
23、节设计的组合(近似单扶正器钟摆钻具组合)215.9PDC钻头158.75钻铤1根177.8偏心短节+158.75短钻铤1根+214扶正器158.75钻铤14根钻井参数:适当增大偏心距,有助于改善防斜效果,在215.9井眼中,由于井壁约束,可取偏心距17mm18mm。 钻 压(kN) 转 速(r/min) 排 量(L/S) 泵压(MPa) 40-60 21730 12偏心防斜钻具工作原理在钟摆钻具的适当位置安放一个偏心短节而形成。偏心短节的作用是让其下部钻铤轴心产生偏移,在钻柱转动过程中产生一个较大的离心力,从而改变钻头处受力状况。由于PDC钻头保径作用,其侧切性较强,使用偏心钻具组合,只要设计
24、好底部钻具组合间距,控制钻压,可以使钻头侧向力合力朝下井壁,起到防斜或纠斜目的。偏心组合的应用,可以有效控制上部井斜,为解放下部钻压创造了良好条件。偏心防斜钻具影响因素 钻压的影响根据现场资料统计,对于40kN60kN钻压。PDC钻头速度最侠,若再增加钻压,产生岩屑较多,无法及时返出,导致井底重复破碎,因此过大钻压是没有必要的。只要把钻压提到40kN60kN,能保证很好的防斜性能。井斜影响井斜增大,降斜力降低,当井斜达到一定值时,降斜力很小,呈稳斜趋势,因此应当控制初始井斜。偏心距影响在一定范围内,偏心距越大,降斜力越大,可以施加的钻压也较大,但当偏心距达到一定值后,与井壁产生接触,将导致钻具
25、性能失效。地层影响地层均有一定造斜力,钻压越大、地层造斜力越大。在地层平缓,地层各向异性不明显时,使用偏心钻具组合,可稳斜或降斜,当地层造斜力很大时,因降斜力只能部分平缓地层力故会减缓井斜的增加。(4)光钻铤组合光钻铤利用适当钻压达到防斜目的的技术。其理论基础是,增加钻压引起钻柱屈曲,保持钻柱涡动。有井斜时,使钻柱产生周期性变化的轴向附加力,无井斜时轴向附加力消失。轴向附加力给钻头与地层的接触增加了一个周期性附加分量,改变了钻头的破岩速率和方向,所以轴向附加力具有防斜和纠斜作用,而不会增斜,这种光钻铤加压防斜技术的一大特点是可以解放钻压。由于不利于下一步施工,现在已不采用。3、造斜段钻具组合
26、215.9mm三牙轮钻头165mm(1或1.25)单弯螺杆定向接头158.8mm无磁钻铤1根+158.8mm钻铤8根127mm钻杆133方钻杆钻井参数:钻 压(kN) 转 速(r/min) 排 量(L/S) 泵压(MPa) 60-80 176-197 25-28 124、增斜段钻具组合 215.9mm三牙轮钻头214mm扶正器158.8mm无磁钻铤1根158.8mm钻铤20根127mm钻杆133mm方钻杆钻井参数:钻 压(kN)转 速(r/min)排 量(L/S)泵压(MPa)150-1806730125、微增、稳斜钻具组合 在常规定向井、普通双目标井中常规微增、稳斜钻具组合应用较多。普通定向
27、井定向施工结束后,通常根据井身质量要求, 选择适当的钻具组合来预控井眼轨迹。合适的钻具组合能使钻头按设计的井眼剖面钻进,减少定向次数,提高一次定向成功率,缩短钻井周期,节约钻井成本。微增钻具:216mm钻头+214扶正器+158mm无磁钻铤1+214mm扶正器+158mm钻铤1+214mm扶正器+158mm钻铤+127mm钻杆稳斜钻具:216mm钻头+214mm扶正器+158mm短钻铤+214mm扶正器+158mm钻铤1+214mm扶正器+158mm钻铤+127mm钻杆 钻 压(kN)转 速(r/min)排 量(L/S)泵压(MPa)150-180673012使用效果微增钻具的作用是在钻进过程
28、中能使井斜微增或能稳住井斜,而方位不变;稳斜钻具的作用是在钻进过程即能稳住井斜又能稳住方位。然而在实际使用过程中可能出现以下情况:微增钻具不增井斜,有时甚至降井斜;稳斜钻具稳不住井斜,井斜呈下降趋势。实践证明当井眼井斜发生变化的时候,方位往往会相应的发生变化。当这种变化与设计不符时井眼轨迹就会偏离预定的方向,达不到井身质量的要求,就需要再次定向。 通过分析影响两种钻具组合特性的主要原因是地层因素,当井眼方位与地层方位一致时,钻具呈增斜特性,反之呈降斜特性;其次是扶正器的外径尺寸不足,影响了下部钻具组合的刚性,钻头受力发生变化,使其不能发挥应有的作用。根据实际情况,可对这两种钻具作如下修正:微增
29、钻具:216mm钻头+214mm扶正器+158mm钻铤1根+158mm钻铤(12m)+214mm扶正器+158mm钻铤1根+214mm扶正器+158mm钻铤+127mm钻杆稳斜钻具:216mm钻头+214mm扶正器+178mm短钻铤(1.52m)+214mm扶正器+158mm钻铤1根+214mm扶正器+158mm钻铤+127mm钻杆6、复合钻具组合 复合钻井技术是由高效钻头、大功率直螺杆或弯螺杆作为井下工具再加上常规钻具组合钻具以适当转速(68-80rpm),配合井下动力钻具迭加钻进,实现转盘钻进、滑动钻进复合,来提高井眼轨迹质量及钻井速度的一种新的钻井方法。近两年来的生产实践表明复合钻具具有
30、强大的功能,它具有增斜、稳斜、降斜、扭方位等多种功能。这种钻具的优点是当产生的效果与井身质量要求不相符时可以随时进行纠正作业,不需要进行起下钻作业,同时机械转速是转盘转速与螺杆转速之和,机械钻速明显提高,大大地缩短了钻井周期,节约了钻井成本。 复合钻具结构特点不同,其控制井眼轨迹功能不同。1、钻头单弯螺杆钻铤钻杆该复合钻具组合具有增斜作用,增斜大小与螺杆的弯度大小和扶正器大小有关,弯度越大则复合钻具组合增斜较快,螺杆钻具的扶正器外径通常只有212mm或210mm,如果螺杆钻具的扶正器外径达到214mm,增斜将较快。另外,通过多口井的现场经验,该复合钻具组合的增斜率还与钻具复合钻进时井斜大小有关
31、,井斜大于200时的增斜率相对大于井斜小于200时的增斜率。2、钻头单弯螺杆欠尺寸扶正器钻铤钻杆该钻具组合具有稳斜作用。稳斜效果受到扶正器外径大小、螺杆弯度大小、钻进参数、地层等多方面因素影响。建南使用该钻具组合时螺杆弯度1.250,欠尺寸扶正器直径209,钻进时微增井斜,钻进100m大约增井斜0.51使用单弯螺杆弯度10,欠尺寸扶正器外径211,钻进时微降井斜。地层越硬、钻压越高能使该钻具组合不易降井斜,常用井口工具种类:吊卡、吊钳、液压大钳、卡瓦、方补心、安全卡瓦等吊卡按用途分:钻杆吊卡(平台肩、锥形台肩)、套管吊卡、油管吊卡。按结构分:侧开式吊卡、对开式(牛头吊卡)和闭锁式吊卡(油管吊卡
32、)。吊卡型号表示方法:D/1.-型式代号:C为侧开式D为对开式B表示闭锁式2.D-产品名称代号表示吊卡3.-结构特征代号:Z为锥形台阶,平台肩省略。4.-孔径mm(大小孔为下孔上孔)mm5.-最大载荷:KN钻杆吊卡技术规范钻杆公称直径及加厚形式/mm钻杆接头焊接部位最大外径/mm平台阶吊卡孔径/mm锥形台阶吊卡孔径/mm吊卡最大载荷系列/KN上孔下孔60.3(23/8)EU65.16963679001125135022503150450073(27/8)EU8184768388.9(31/2)EU98.410292101101.6(4)EU104.8109105-106.4-109101.6(
33、4)EU114.3118105114.3(41/2)IU117.5122118119.1-121114.3(41/2)EU127131118-127(5)IEU130.2134131133139.7(51/2)IU-149144-139.7(51/2)EU144.5149144148注:IU表示内加厚钻杆,EU表示外加厚钻杆,IEU表示内外加厚钻杆。套管吊卡技术规范套管吊卡/mm(in)吊卡孔径/mm吊卡最大载荷系列/KN114.3(41/2)11790011251350225031504500127(5)130139.7(51/2)142168.3(65/8)171177.8 (7)1811
34、93.7(75/8)197219.1(85/8)222244.5(95/8)248273(10)277298.4(113/4)303325(123/4)329339.7(133/8)344406.4(16)411473.1(185/8)478508(20)513钻杆公称直径及加厚形式/mm油管加厚部分外径/mm平台阶吊卡孔径/mm吊卡最大载荷系列/KN上孔下孔48.3(1.9)-50502253605856759001125135048.3(1.9)EU53.0565060.3(23/8)-636360.3(23/8)EU65.9686373.0(27/8)-767673(27/8)EU78.
35、6827688.9(31/2)-929288.9(31/2)EU95.29892101.6(4)-104104101.6(4)EU108.0110104114.3(41/2)-117117114.3(41/2)120.6123117常规定向及扭方位方法使用磁性单点测斜仪进行人工定向时,只能使用磁性高边定向法。然而,当使用电子单点测斜仪、有线随钻测斜仪(或无线)进行定向时,可以使用重力高边定向法和磁性高边定向法两种;其中当井斜角小于或等于10时,通常采用磁性高边定向法,当井斜角大于10时,通常采用重力高边定向法。1、磁性高边定向法1.1 当目前定向点井斜角小于或等于1时,或者说,当目前定向点井斜
36、角在1以内时,可以直接将定向钻具的工具面摆在设计目标方位上,进行直接定向钻进。即定向钻具的工具面角等于设计目标方位角,装置角等于设计目标方位角与目前定向点方位角的差值。1.2 当井斜角大于1且小于或等于3时,目标方位角减去目前定向点方位角的差值(绝对值)小于或等于20时,增井斜扭方位,即装置角等于方位角差值;大于20且不在140-220之间时,全力扭方位,即装置角等于90或270;大于140且小于或等于220时,可以近似地称为目前井眼方位与目标井眼方位反向,定向时必须全力降井斜,即装置角等于180,待把井斜降到1以内,再按照1.1方法进行直接定向。1.3 当井斜角大于3且小于或等于5时,目标方
37、位角减去目前定向点方位角的差值(绝对值)小于或等于20时,增井斜斜扭方位,即装置角等于方位角差值;大于20时,全力扭方位,即装置角等于90或270;等于180时,全力降井斜,即装置角等于180,待把井斜降到3以内,再按照1.2方法进行定向或扭方位。1.4 当井斜角大于5且小于或等于10时,目标方位角减去目前定向点方位角的差值(绝对值)小于或等于20时,增井斜扭方位,即装置角等于方位角差值的2倍;大于20时,全力扭方位,即装置角等于90或270;等于180时,全力降井斜,即装置角等于180,待把井斜降到5以内,再按照1.3方法进行定向或扭方位。1.5 采用磁性高边定向法时,定向钻具的工具面角等于
38、目前定向点方位角加上(或减去)定向所需的装置角。2、重力高边定向法2.1 采用重力高边定向法时,装置角的计算方法与前面相同,工具面的计算方法与前面不同。即定向钻具的工具面直接摆在定向所需的装置角上或等于定向所需的装置角。2.2 当井斜角大于10时,目标方位角减去目前定向点方位角的差值(绝对值)等于零时,全力增井斜;不等于零时,全力扭方位,即装置角等于90或270;等于180时,全力降井斜,即装置角等于180。3、扭方位定向方法3.1 扭方位与定向(或造斜)是定向井施工过程中不同阶段定向施工的两种称呼。在直井段施工结束后,使用定向钻具,采用定向措施迫使井眼偏离直井段,开始向设计目标方位偏斜的过程
39、称为(第一次)定向(或造斜);然而,在斜井段施工中,由于地层、钻头、钻具组合等因素使实际井眼轨迹严重脱离设计井眼轨迹可能最终导致脱靶时,使用定向钻具,采用定向措施迫使井眼回到设计井眼轨迹上来的过程称为(第二次)定向(或造斜),也称为扭方位。3.2 扭方位施工的定向方法也有磁性高边定向法和重力高边定向法两种,其选择使用范围与前面相同;装置角和工具面角的计算方法也与前面完全相同。唯一不同的是:定向过程都是在增井斜状况下进行的,增井斜扭方位则必须先扭方位再增井斜,如果井斜不大时也可以同时增井斜扭方位;扭方位过程可能在增井斜状况下进行也可能在降井斜状况下进行,在增井斜状况下进行时与定向过程完全一样,在降井斜状况下进行时降井斜扭方位则必须先降井斜再扭方位,如果井斜不大时也可以同时降井斜扭方位。14