极限计算方法总结.doc

上传人:sk****8 文档编号:4282351 上传时间:2019-10-12 格式:DOC 页数:8 大小:248.50KB
下载 相关 举报
极限计算方法总结.doc_第1页
第1页 / 共8页
极限计算方法总结.doc_第2页
第2页 / 共8页
极限计算方法总结.doc_第3页
第3页 / 共8页
极限计算方法总结.doc_第4页
第4页 / 共8页
极限计算方法总结.doc_第5页
第5页 / 共8页
点击查看更多>>
资源描述

1、极线的运算法则班级:组名:组员: 高等数学是理工科院校最重要的基础课之一,极限是高等数学的重要组成部分。求极限方法众多,非常灵活,给函授学员的学习带来较大困难,而极限学的好坏直接关系到高等数学后面内容的学习。下面先对极限概念和一些结果进行总结,然后通过例题给出求极限的各种方法,以便学员更好地掌握这部分知识。一、极限定义、运算法则和一些结果1定义:(各种类型的极限的严格定义参见高等数学函授教材,这里不一一叙述)。说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:;等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极

2、限严格定义证明。2极限运算法则定理1 已知 ,都存在,极限值分别为A,B,则下面极限都存在,且有 (1)(2)(3) 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。3两个重要极限(1) (2) ; 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964),副教授。例如:,;等等。 4等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。定理3 当时,下列函数都是无穷小(即极限是0),且相互等价,即有: 。说明:当上面每个函数中的自变量x换成时(),仍有上面的等价关系成立,例如:当时, ;

3、。 定理4 如果函数都是时的无穷小,且,则当存在时,也存在且等于,即=。5洛比达法则 定理5 假设当自变量x趋近于某一定值(或无穷大)时,函数和满足:(1)和的极限都是0或都是无穷大; (2)和都可导,且的导数不为0; (3)存在(或是无穷大); 则极限也一定存在,且等于,即= 。说明:定理5称为洛比达法则,用该法则求极限时,应注意条件是否满足,只要有一条不满足,洛比达法则就不能应用。特别要注意条件(1)是否满足,即验证所求极限是否为“”型或“”型;条件(2)一般都满足,而条件(3)则在求导完毕后可以知道是否满足。另外,洛比达法则可以连续使用,但每次使用之前都需要注意条件。6连续性 定理6 一

4、切连续函数在其定义去间内的点处都连续,即如果是函数的定义去间内的一点,则有 。7极限存在准则 定理7(准则1) 单调有界数列必有极限。 定理8(准则2) 已知为三个数列,且满足:(1) (2) , 则极限一定存在,且极限值也是a ,即。二、求极限方法举例1 用初等方法变形后,再利用极限运算法则求极限例1 解:原式= 。注:本题也可以用洛比达法则。例2 解:原式= 。例3 解:原式 。2 利用函数的连续性(定理6)求极限例4 解:因为是函数的一个连续点, 所以 原式= 。3 利用两个重要极限求极限例5 解:原式= 。注:本题也可以用洛比达法则。例6 解:原式= 。例7 解:原式= 。4 利用定理

5、2求极限例8 解:原式=0 (定理2的结果)。5 利用等价无穷小代换(定理4)求极限 例9 解:,原式= 。例10 解:原式= 。注:下面的解法是错误的: 原式= 。 正如下面例题解法错误一样: 。例11 解:, 所以, 原式= 。(最后一步用到定理2)6 利用洛比达法则求极限说明:当所求极限中的函数比较复杂时,也可能用到前面的重要极限、等价无穷小代换等方法。同时,洛比达法则还可以连续使用。例12 (例4)解:原式= 。(最后一步用到了重要极限)例13 解:原式= 。例14 解:原式= 。(连续用洛比达法则,最后用重要极限)例15 解:例18 解:错误解法:原式= 。 正确解法:应该注意,洛比

6、达法则并不是总可以用,如下例。例19 解:易见:该极限是“”型,但用洛比达法则后得到:,此极限不存在,而原来极限却是存在的。正确做法如下:原式= (分子、分母同时除以x) = (利用定理1和定理2)7 利用极限存在准则求极限例20 已知,求解:易证:数列单调递增,且有界(02),由准则1极限存在,设 。对已知的递推公式 两边求极限,得: ,解得:或(不合题意,舍去)所以 。例21 解: 易见:因为 ,所以由准则2得: 。上面对求极限的常用方法进行了比较全面的总结,由此可以看出,求极限方法灵活多样,而且许多题目不只用到一种方法,因此,要想熟练掌握各种方法,必须多做练习,在练习中体会。另外,求极限还有其它一些方法,如用定积分求极限等,由于不常用,这里不作介绍。8

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 重点行业资料库 > 自然科学

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。