1、题目自适应模糊PID控制器的MATLAB的设计学生姓名学号专业班级指导教师学院电气工程与信息工程学院答辩日期2I摘要PID比例积分微分控制具有结构简单、稳定性能好、可靠性高等优点,尤其适用于可建立精确数学模型的控制系统。而对于一些多变量、非线性、时滞的系统,传统的PID控制器并不能达到预期的效果。随着模糊数学的发展,模糊控制的思想逐渐得到控制工程师们的重视,各种模糊控制器也应运而生。而单纯的模糊控制器有其自身的缺陷控制效果很粗糙、控制精度无法达到预期标准。但利用传统的PID控制器和模糊控制器结合形成的模糊自适应的PID控制器可以弥补其缺陷;它将系统对应的误差和误差变化率反馈给模糊控制器进而确定
2、相关参数,保证系统工作在最佳状态,实现优良的控制效果。本设计介绍了参数自适应模糊PID控制器的设计方法和步骤。并利用MATLAB中的SIMULINK和模糊逻辑推理系统工具箱进行了控制系统的仿真研究,并简要地分析了对应的仿真数据。关键词经典PID控制;模糊控制;自适应模糊PID控制器;参数整定;MATLAB仿真IIABSTRACTPIDPROPORTIONINTEGRATIONDIFFERENTIATIONCONTROL,WITHLOTSOFADVANTAGESINCLUDINGSIMPLESTRUCTURE,GOODSTABILITYANDHIGHRELIABILITY,ISQUITESUIT
3、ABLETOESTABLISHESPECIALLYTHECONTROLSYSTEMWHICHACCURATEMATHEMATICALMODELISAVAILABLEANDNEEDEDHOWEVER,TAKENMULTIVARIABLE,NONLINEARANDTIMELAGINTOCONSIDERATION,TRADITIONALPIDCONTROLLERCANNOTREACHTHEEXPECTEDEFFECTALONGWITHTHEDEVELOPMENTOFFUZZYMATHEMATICS,CONTROLENGINEERSGRADUALLYPAYMUCHATTENTIONTOTHEIDEAO
4、FFUZZYCONTROL,THUSPROMOTINGTHEINVENTIONOFFUZZYCONTROLLERSHOWEVER,SIMPLEFUZZYCONTROLLERHASITSOWNDEFECT,WHERECONTROLEFFECTISQUITECOARSEANDTHECONTROLPRECISIONCANNOTREACHTHEEXPECTEDLEVELTHEREFORE,THEFUZZYADAPTIVEPIDCONTROLLERISCREATEDBYTAKINGADVANTAGEOFTHESUPERIORITYOFPIDCONTROLLERANDFUZZYCONTROLLERTAKE
5、NTHISCONTROLLERINUSE,THECORRESPONDINGERRORANDITSDIFFERENTIALERROROFTHECONTROLSYSTEMCANBEFEEDBACKEDTOTHEFUZZYLOGICCONTROLLERMOREOVER,THETHREEPARAMETERSOFPIDCONTROLLERISDETERMINEDONLINETHROUGHFUZZIFICATION,FUZZYREASONINGANDDEFUZZIFICATIONOFTHEFUZZYSYSTEMTOMAINTAINBETTERWORKINGCONDITIONTHANTHETRADITION
6、ALPIDCONTROLLERMEANWHILE,THEDESIGNMETHODANDGENERALSTEPSAREINTRODUCEDOFTHEPARAMETERSELFSETTINGFUZZYPIDCONTROLLEREVENTUALLY,THEFUZZYINFERENCESYSTEMSTOOLBOXANDSIMULINKTOOLBOXAREUSEDTOSIMULATECONTROLSYSTEMTHERESULTSOFTHESIMULATIONSHOWTHATSELFORGANIZINGFUZZYCONTROLSYSTEMCANGETABETTEREFFECTTHANCLASSICALPI
7、DCONTROLLEDEVIDENTLYKEYWORDSCLASSICPIDCONTROLFUZZYCONTROLPARAMETERSTUNINGTHEFUZZYADAPTIVEPIDCONTROLLERMATLABSIMULATIONIII目录摘要IABSTRACTII第1章绪论111课题的研究背景及意义112PID控制的特点113模糊控制技术概述2第2章模糊控制理论421模糊集合定义422模糊语言423模糊变量的隶属函数524模糊推理系统的数据结构管理函数介绍925论域、量化因子、比例因子的选择11251论域及基本论域11252量化因子及比例因子12第3章基于MATLAB的模糊控制器的设计
8、内容1431模糊控制器概述1432模糊控制器设计所包括的内容1433模糊控制器的结构设计1434模糊控制器规则的设计1535精确量的模糊化1536模糊推理及其模糊量去模糊化方法1637模糊控制规则表1638模糊控制器的维数确定17第4章PID控制器1941PID的概述1942PID控制的基本理论1943模糊PID控制2144模糊PID控制器组织结构2245模糊PID控制器模糊部分设计22451定义输入、输出模糊集并确定个数类别22452确定输入输出变量的实际论域23453定义输入、输出的隶属函数23IV454确定相关模糊规则并建立模糊控制规则表25455模糊推理25第5章模糊PID控制器的MA
9、TLAB仿真2651模糊控制器的设计27511模糊控制器原理图27512自适应模糊PID控制器设计27513控制系统的SIMULINK实现2752MATLAB仿真32521MATLAB简介32522利用子系统对控制系统进行SIMULINK建模33523控制系统的SIMULINK仿真研究3353分析与结论35第6章结束语36参考文献37外文原文和译文错误未定义书签。致谢38附录391第1章绪论11课题的研究背景及意义现代控制系统,规模越来越大,系统越来越复杂,用传统的控制理论方法已不能满足控制的要求。智能控制是在经典控制理论和现代控制理论的基础上发展起来的,是控制理论、人工智能和计算机科学相结合
10、的产物。智能控制主要分为模糊逻辑控制、神经网络控制和实时专家系统。研究的主要目标不仅仅是被控对象,同时也包含控制器本身。模糊理论是在美国柏克莱加州大学电气工程系LAZADEH教授于1965年创立的模糊集合理论的数学基础上发展起来的,主要包括模糊集合理论、模糊逻辑、模糊推理和模糊控制等方面内容。LAZADEH教授在1965年发表的FUZZYSET论文中首次提出表达事物模糊性的重要概念隶属函数。模糊控制理论的核心是利用模糊集合论,把人的控制策略的自然语言转化为计算机能够接受的算法语言所描述的算法。但它的控制输出却是确定的,它不仅能成功的实现控制,而且能模拟人的思维方式,对一些无法构成数学模型的对象
11、进行控制。“模糊概念”更适合于人们的观察、思维、理解、与决策,这也更适合于客观现象和事物的模糊性。“模糊控制”的特色就是一种“语言型”的决策控制。模糊控制技术,已经成为智能控制技术的一个重要分支,它是一种高级算法策略和新颖的技术。自从1974年英国的马丹尼EHMANDANI工程师首先根据模糊集合理论组成的模糊控制器用于蒸汽发动机的控制以后,在其发展历程的30多年中,模糊控制技术得到了广泛而快速的发展。现在,模糊控制已广泛地应用于冶金与化工过程控制、工业自动化、家用电器智能化、仪器仪表自动化、计算机及电子技术应用等领域。尤其在交通路口控制、机器人、机械手控制、航天飞行控制、汽车控制、电梯控制、核
12、反应堆及家用电器控制等方面,表现其很强的应用价值。并且目前已有了专用的模糊芯片和模糊计算机的产品,可供选用。我国对模糊控制器开始研究是在1979年,并且已经在模糊控制器的定义、性能、算法、鲁棒性、电路实现方法、稳定性、规则自调整等方面取得了大量的成果。著名科学家钱学森指出,模糊数学理论及其应用,关系到我国二十一世纪的国力和命运。12PID控制的特点PID控制的优点与缺点11PID控制具有适应性强的特点,适应各种控制对象,参数的整定是PID控制的一个关键问题;2只要参数整定合适,对大多数被控对象可以实现无差控制,稳态性能好,但动态特性不太理想;3PID控制不具有自适应控制能力,对于时变、非线性系
13、统控制效果不佳。当系统2参数发生变化时,控制性能会产生较大的变化,控制特性可能变坏,严重时可能导致系统的不稳定。虽然PID控制具有一些不理想的方面,但由于其具有十分明显的优点,在工业过程控制领域一直占据了主导地位,而且全世界的控制技术研究和应用人员对PID控制进行了大量的研究,努力改善PID控制的性能。围绕PID控制,并与多种其它控制技术结合,形成了多种PID控制技术,以下是一些PID控制技术的发展和研究方向(1)专家PID控制专家控制EXPERTCONTROL的实质是基于受控对象和控制规律的各种知识,并以智能的方式利用这些知识来设计控制器。利用专家经验来设计PID参数便构成专家PID控制;(
14、2)模糊PID控制模糊控制技术与PID控制结合构成模糊PID控制;(3)神经PID控制运用神经网络技术对PID控制参数进行整定,构成神经PID控制;(4)遗传PID控制用遗传算法对PID控制参数进行整定和优化,构成遗传PID控制;(5)灰色PID控制灰色系统理论与PID控制结合进行系统控制构成PID控制。以上多种PID控制方法,是PID控制与现代控制技术的结合,主要是在PID参数动态整定上进行了大量研究,在保持PID控制基本原理的基础上,改善了PID控制的性能,在工业过程控制领域继续占据着主导地位。13模糊控制技术概述模糊控制主要还是建立在人的直觉和经验的基础上,这就是说,操作人员对被控系统的
15、了解不是通过精确的数学表达式,而是通过操作人员丰富的实践经验和直观感觉。这种方法可以看成是一组探索式决策规则。模糊控制是以模糊集合论、模糊语言变量和模糊逻辑推理为基础的一种计算机控制方法,作为智能控制的一个重要分支,在控制领域获得了广泛应用。模糊控制的核心是模糊控制器,而模糊控制器的关键是模糊控制规则的确定,即模糊控制规则表,模糊控制规则表是根据专家或者操作者的手动控制经验总结出来的一系列控制规则。一般最易为人所观察到的就是被控过程的输出变量及其变化率,因此通常把误差E及其变化率EC作为模糊控制器的输入语言变量,把控制量U作为模糊控制器的输出语言变量,从关系上看为,ECEFU,实质上体现为模糊
16、控制器是一种非线性的比例微分PD控制关系。模糊控制系统框图如图11所示。图11模糊控制系统框图误差E、误差变化率EC和输出Y的实际变化范围,称为模糊控制的基本论域。在模糊控制中,用模糊概念来表述输入和输出变量,E和EC称为输入语言变量,Y称为输出语言变量。语言变量是一个模糊集合,语言变量的取值称为语言变量值。语言变量值根3据问题需要确定,是语言变量的模糊子集。语言变量值是构成语言变量的词集。对于输入变量E、EC在基本论域内的一个实际值,为实施模糊控制,需要将其转化为语言变量值,这个转化依赖于语言变量值的隶属度函数,这种转化的过程叫模糊化。经过模糊化处理后,得到输入变量E、EC在输入基本论域内的
17、一个实际值隶属于各语言变量值的程度。一般在一个模糊规则的前件中往往不只有一个命题,需要用模糊算子获得该规则前件被满足的程度。模糊算子的输入是两个或者多个输入的经过模糊化后得到的语言变量值隶属度值,其输出是一条规则的整个前件被满足的隶属度。将一条规则的整个前件被满足的隶属度作为输入,根据规则“如果X是A,则Y是B”,表示的A与B之间的模糊蕴涵关系AB进行模糊推理,可以得到一个输出模糊集,即输出语言变量值,这种过程称为模糊推理。模糊推理又称模糊逻辑推理,它是一种以模糊推断为前提,运用模糊语言规则,推出一个新的近似的模糊推断结论的方法。模糊推理的关键是模糊控制规则的确定,即模糊控制规则表,模糊控制规
18、则表是根据专家或者操作者的手动控制经验总结出来的一系列控制规则。由于一般情况下,模糊规则库由多条规则组成,经过模糊推理得到的是一个由每一条规则推理得出的输出语言变量值的集合,因此需要将这些输出语言变量值进行某种合成运算,得到一个综合的输出模糊集,这种过程称为模糊合成。将经过模糊合成得到的综合输出模糊集进行转化,即将语言变量值转化为输入变量基本论域内的一个实值,对被控过程进行控制,这种过程叫模糊判决或者叫去模糊化。4第2章模糊控制理论21模糊集合定义模糊集合论域U到0,1区间的任一映射A,即AU0,1(21)确定U的一个模糊子集A,简称模糊集。A称为A的隶属度函数,XA称为X对A的隶属度。XA表
19、示论域U中的元素X属于模糊子集A的程度或等级。它在0,1闭区间内可连续取值。XA的值越接近1,则X隶属于A的程度越高;XA越接近于0,表示属于A的程度低。22模糊语言语言是一种符号系统,它包括自然语言,机器语言等等。其中自然语言是以字或词为符号的一种符号系统,人们用它表示主客观世界的各种事物、观念、行为和情感的意义,是人们在日常工作和生活中所使用的语言。自然语言中常含有模糊概念。在实际生产过程中,人们发现,有经验的操作人员,虽然不懂被控对象或被控过程的数学模型,却能凭借经验采取相应的决策,很好的完成控制工作2。例如,控制加热炉的温度时,就可以根据操作工人的经验调节电加热炉供电电压,达到升温和降
20、温的目的,人工操作控制温度时,操作工人的经验,可以用下述语言来描述若炉温低于给定温度则升压,低的越多,升压越高。若炉温高于给定温度则降压,高的越多,降压越低。若炉温等于给定温度,则保持电压不变。上述这些用以描述操作经验的一系列模糊性语言,就是模糊条件语句。再用模糊逻辑推理对系统的实时输入状态观测量进行处理。则可产生相应的控制决策,这就是模糊控制。图21是一个人工操作的控制系统示意图。操作者首先通过传感器和仪表显示设备,知道系统的输出量及其变化的模糊信息。然后,操作者就用这些信息,根据已有的经验来分析判断,得出相应的控制决策,实现对工业对象的控制。5图21工业操作的控制系统一般来说,当人进行控制
21、时,必须根据输入的偏差及偏差变化率综合地进行权衡和判决。操作者在对受控过程进行控制时,测量或观测到的偏差值和偏差的变化速率是一些清晰量,经过模糊化得到偏差、偏差变化率大、中、小的某个模糊量的概念。经过人的模糊决策后,得到决策的控制输出模糊量。当按照已定的模糊决策去执行具体的动作时,所执行的动作又必须以清晰的量表现出来。因此,图21的人机过程可归结为将偏差E、偏差变化率EC的清晰量经模糊化得到模糊量E和EC,将模糊近似推理分析得到模糊控制输出U,然后经模糊决策判断,得到清晰值的控制量U去执行控制动作。23模糊变量的隶属函数模糊集使得某元素可以以一定程度属于某集合,某元素属于某集合的程度由“0”与
22、“1”之间的一个数值隶属度来刻画和描述。把一个具体的元素映射到一个合适的隶属度是由隶属函数来实现的。隶属度函数可以是任意形状的曲线,取什么形状取决于是否让我们使用起来感到简单、方便、快速、有效,惟一的约束条件是隶属度函数的值域为0,1。MATLAB模糊工具箱提供了许多函数,如表21所示的模糊隶属度函数,用以生成特殊情况的隶属函数,包括常用的三角型、高斯型、型、钟型等隶属函数。表21模糊隶属度函数函数名函数功能描述PIMF建立型隶属度函数GAUSS2MF建立双边高斯型隶属度函数GAUSSMF建立高斯型隶属度函数GBELLMF生成一般的钟型隶属度函数SMF建立S型隶属度函数6TRAPMF生成梯形型
23、隶属度函数TRIMF生成三角型隶属度函数ZMF建立Z型隶属度函数3在模糊控制中应用较多的隶属函数有一下6种(1)高斯型隶属函数如图22所示,它的MATLAB表示为GAUSSMFX,C。图22高斯型隶属函数(2)广义钟形隶属函数如图23所示,它的MATLAB表示为GBELLMFX,A,B,C。7图23广义钟形隶属函数(3)S形隶属函数如图24所示,它的MATLAB表示为SIGMF(X,A,C)。图24S形隶属函数(4)梯形隶属函数如图25所示,它的MATLAB表示为TRAPMX,A,B,C,D。8图25梯形隶属函数(5)三角形隶属函数如图26所示,它的MATLAB表示为TRIMF(X,A,B,C
24、)。图26三角形隶属函数(6)Z形隶属函数如图27所示,它的MATLAB表示为ZMF(X,A,B)。9图27Z形隶属函数24模糊推理系统的数据结构管理函数介绍模糊推理是采用模糊逻辑由给定的输入到输出的映射过程。模糊推理包括五个方面(1)输入变量模糊化,即把确定的输入转化为由隶属度描述的模糊集。(2)在模糊规则的前件中应用模糊算子(与、或、非)。(3)根据模糊蕴含运算由前提推断结论。(4)合成每一个规则的的结论部分,得出总的结论。(5)反模糊化,即把输出的模糊量转化为确定的输出。输入变量是输入变量域内的某一个确定的数,输入变量经模糊化后,变换为由隶属度表示的0和1之间的某个数。模糊化常由隶属度函
25、数或查表求得。输入变量模糊化后,我们就知道每个规则前件中的每个命题被满足的程度。如果给定规则的前件中不止一个命题,则需要模糊算子获得该规则前件被满足的程度。模糊算子的输入是两个或多个输入变量经模糊化后得到的隶属度值,其输出是整个前件的隶属度,模糊逻辑算子可取T算子和协T算子中的任意一个,常用的与算子有MIN(模糊交)和PROD(代数积),常用的或算子有MAX模糊并和PROBOR(概率或)。模糊合成也是一种模糊算子,该算子的输入是每一个规则输出的模糊集,输出是这些模糊集经合成后得到的一个综合输出模糊集。常用的模糊算子有MAX模糊并、PROBOR(概率或)和SUM(代数和)。在MATLAB工具箱中
26、,把模糊推理系统的各部分作为一个整体,提供了模糊推理系统数据结构管理函数,用以完成模糊规则的建立、解析与修改,模糊推理系统的建立、修改和存储管理以及模糊推理的计算及去模糊化等操作4。(1)READFIS功能从磁盘载入模糊推理系统。(2)ADDRULE功能向模糊推理系统添加模糊规则。10(3)ADDVAR功能向模糊推理系统添加变量。(4)CONVERTFIS功能将模糊逻辑工具箱10版FIS转换为20版FIS结构。(5)EVALFIS功能执行模糊推理计算。(6)GENSURF功能生成模糊推理系统的曲面并显示。(7)GETFIS功能获得模糊推理系统特性曲线。(8)MAM2SUG功能将MAMDANIF
27、IS变换为SUGENOFIS。(9)PARSRULE功能解析模糊规则。(10)PLOTFIS功能作图显示模糊推理系统输入/输出结构。(11)PLOTMF功能绘制隶属度函数曲线。(12)RMMF功能从模糊推理系统中删除隶属度函数。(13)RMVAR功能从模糊系统中删除对象。(14)SETFIS功能设置模糊推理特性。(15)SHOWFIS功能显示添加了注释的模糊推理系统。11(16)SHOWRULE功能显示模糊规则。(17)WRITEFIS功能将模糊规则保存到磁盘中。(18)ADDMF功能向模糊推理系统添加隶属度函数。(19)DEFUZZ功能隶属度函数的去模糊化。去模糊化方法的5个可取的值如下CE
28、NTROID面积重心法。BISECTOR面积平分法。MOM平均最大隶属度法。SOM最大隶属度取最小法。LOM最大隶属度取最大法。(20)EVALMF功能通用隶属度函数估计。(21)MF2MF功能隶属度函数间的参数转换。(22)NEWFIS功能建立新的模糊推理系统。25论域、量化因子、比例因子的选择251论域及基本论域模糊控制器把输入变量误差、误差变化的实际范围称为这些变量的基本论域。显然基本论域内的量为精确量。被控对象实际要求的控制量的变化范围,称为模糊控制器输出变量控制量的基本论域,控制量的基本论域内的量也是精确量。若设误差变量所取的模糊子集的论域为12N,N1,0,N1,N误差变化变量所取
29、的模糊子集的论域为M,M1,0,M1,M控制量所取的模糊子集的论域为X,X1,0,X1,X有关论域的选择问题,一般选误差的论域6N,选误差变化的论域6M,选控制量的论域6X。值得指出的是,从道理上讲,增加论域中的元素个数,即把等级细分,可提高控制精度,但这受到计算机字长的限制,另外也要增大计算量。因此,把等级分得过细,对模糊控制显得必要性不大。关于基本论域的选择,由于事先对被控对象缺乏经验知识,所以误差及误差变化的基本论域只能做初步的选择,待系统调整时再进一步确定。控制量的基本论域根据被控对象提供的数据选定5。252量化因子及比例因子当由计算机实现模糊控制算法进行模糊控制时,每次采样得到的被控
30、制量需经计算机计算,才能得到模糊控制器的输入变量误差及误差变化。为了进行模糊化处理,必须将输入变量从基本论域转换到相应的模糊集的论域,这中间需将输入变量乘以相应的因子,这就是量化因子。“量化因子”模块和“比例因子”模块,都是为了对清晰值进行比例变换而设置的,其作用是使变量按一定比例进行放大或缩小,以便跟相邻模块很好地匹配。当然这种变换,对整个系统的工作性能也会产生一定的影响。输入模糊控制器的向量信号,在二维系统中通常由两个分量E和EC组成,它们是通过采样或计算得出的清晰值,都是连续的实数。把分量的取值范围称为物理论域X。输入模糊控制器的向量的分量都是清晰值,需要经过模糊化变换,把它映射到模糊子
31、集上,即变换成模糊量,才能输入到模糊推理模块中进行近似推理。把这所有模糊子集的论域N称为模糊论域。物理论域和模糊论域都是连续实数,X由采样得到的输入变量决定,N由覆盖输入量的F子集可取值的范围决定。物理论域和模糊论域可以完全一样。不过由于外部环境的多变,一般希望模糊论域稳定不变(即模糊推理器参数不变),因此多数情况下X和N是不同的。把清晰值从物理论域X,变换到模糊论域N上的变换系数,叫量化因子。这一变换在模糊控制器中的作用,是使输入信号的取值范围放大或缩小,以适应设定的模糊论域要求。经过近似推理得出的是模糊量,需要经过清晰化模块的处理变成清晰量,才能推动后面的执行机构。清晰化处理后的变量虽然是
32、清晰值,但其取值范围是由模糊推理得到的所有F子集确定的,覆盖这些F子集的数值范围称为模糊论域N3。这个模糊论域和后面执行机构需求的数值范围物理论域U未必一致,也需要进行论域的变换。由模糊论域N3到物理论域U的变换系数叫比例因子。量化因子和比例因子均是考虑两个论域变换而引出的,但对输入变量而言的量化因子确实具有量化效应,而对输出而言的比例因子只起比例作用。设计一个模糊控制器除了要有一个好的模糊控制规则外,合理地选择模糊控制器输入变量的量化因子和输出控制量的比例因子也是非常重要的。量化因子和比例因子的大小及其不同量化因子之间大小的相对关系,对模糊控制器的控制性能影响极大。合理地确定量化因子和比例因
33、子要13考虑所采用的计算机的字长,还要考虑到计算机的输入输出接口中D/A和A/D转换的精度及其变化的范围。因此,选择量化因子和比例因子要充分考虑与D/A和A/D转换精度相协调,使得接口板的转换精度充分发挥,并使其变换范围充分被利用。量化因子KE及KEC的大小对控制系统的动态性能影响很大。KE选的较大时,系统的超调也较大,过渡过程较长。因为从理论上讲KE增大,相当于缩小了误差的基本论域,增大了误差变量的控制作用,因此导致上升时间变短,但由于出现超调,使得系统的过渡过程变长。KEC选择较大时,超调量减小,但系统的响应速度变慢。KEC才对超调的遏制作用十分明显。量化因子KE和KEC的大小意味着对输入
34、变量误差和误差变化的不同加权程度,二者之间相互影响67。量化因子和比例因子除了进行论域变换,使前后模块匹配之外,在整个系统中还有一定的调节作用。因为它的变化相当于对实际测量信号的放大或缩小,直接影响着采样信号对系统的调节控制作用。此外,输出比例因子KU的大小也影响着模糊控制系统的特点。KU选择过小会使系统动态响应过程变长,而KU选择过大会导致系统振荡。输出比例因子KU作为模糊控制器的总的增益,它的大小影响着控制器的输出,通过调整KU可以改变对被控对象过程输入的大小8。14第3章基于MATLAB的模糊控制器的设计内容31模糊控制器概述模糊逻辑控制器FUZZYLOGICCONTROLLER,简称为
35、模糊控制器FUZZYCONTROLLER。因为模糊控制器的控制规则是基于模糊条件语句描述的语言控制规则,所以模糊控制器又称为模糊语言控制器。设计模糊控制系统的核心是设计模糊控制器,在设计模糊控制器的过程中,确定模糊控制器的结构、建立模糊规则并选定近似推理算法是两个核心工作,与之配套的是设计模糊化模块、选择模糊子集的隶属函数、设计清晰化模块并选择清晰化方法。其中根据积累的人工操作经验或测试数据,即那里模糊控制规则是设计模糊控制器中最为核心的工作,也是设计模糊控制系统的基本物质基础,就像设计传统控制系统数学模型一样重要。模糊控制器包含模糊接口、规则库、模糊推理、清晰化接口等部分。输入变量是过程实测
36、变量与系统设定值之差值。输出变量是系统的实时控制修正变量。一维模糊控制器的输入量是系统的偏差量E,它是确定数值的清晰量。通过模糊化处理,用模糊语言E来描述偏差。模糊推理输出U是模糊量,在系统中要实施控制时,模糊量U还要转化为清晰值,因此要进行清晰化处理,得到可操作的确定值U,这就是模糊控制器的输出值,通过U的调整控制作用,使偏差E尽量小9。二维模糊控制器是目前广为采用的一类模糊控制器。它的输入量是偏差E和偏差变化率EC,以控制量的变化值U作为输出量,它比一维控制器有较好的控制效果,且易于计算机的实现10。32模糊控制器设计所包括的内容1确定模糊控制器的输人变量和输出变量即控制量;2设计模糊控制
37、器的控制规则;3确立模糊化和非模糊化又称清晰化的方法;4选择模糊控制器的输入变量及输出变量的论域并确定模糊控制器的参数如量化因子、比例因子;5合理选择模糊控制算法的采样时间。33模糊控制器的结构设计模糊控制器的结构设计是指确定模糊控制器的输入变量和输出变量,究竟选择哪些变量作为模糊控制器的信息量,还必须深入研究在手动控制过程中,人如何获取、输出信息,因为模糊控制器的控制规则归根到底还是要模拟人脑的思维决策方式。模糊控制器工作的原理,是将输入的数字信号经过模糊化变成模糊量,送入含有模糊规则的模糊推理模块,经过近似推理得出结论模糊集合,然后被清晰化模块变换成清晰量,在输出到下一级去调节被控对象,使
38、其输出满意的结果。十几模糊控制器的首要任务,是对操作经验或测试数据进行的归纳、总结和分析,确定输入、输出变量,进而确定模糊控制器的结构。15在手动过程中,人所能获得的信息量基本上为三个误差、误差的变化、误差变化的变化,即误差变化的速率。一般来说,人对误差最敏感,其次是误差的变化,再次是误差变化的速率。从理论上讲,模糊控制器的维数越高,控制越精细。但维数过高,模糊控制规则变得过于复杂,控制算法的实现相当困难。这或许是目前人们广泛设计和应用二维模糊控制器的原因所在,因此,本设计也采用二维模糊控制器,即以误差、误差的变化率作为输入11。34模糊控制器规则的设计控制规则的设计是设计模糊控制器的关键,一
39、般包括三部分设计内容选择描述输入、输出变量的词集,定义各模糊变量的模糊子集及建立模糊控制器的控制规则。(1)选择描述输入和输出变量的词集。模糊控制器的控制规则表现为一组模糊条件语句,在条件语句中描述输入输出变量状态的一些词汇如“正大”、“负小”等的集合,称为这些变量的词集亦可以称为变量的模糊状态。选择较多的词汇描述输入、输出变量,可以使制定控制规则方便,但是控制规则相应变得复杂;选择词汇过少,使得描述变量变得粗糙,导致控制器的性能变坏。一般情况下都选择七个词汇,但也可以根据实际系统需要选择三个或五个语言变量。针对被控对象,改善模糊控制结果的目的之一是尽量减小稳态误差。因此,对应于控制器输入误差
40、、误差的变化率之一的误差采用负大,负中,负小,零,正小,正中,正大用英文字头缩写为NB,NM,NS,ZO,PS,PM,PB另一个输入误差的变化率及控制器的输出采用负大,负中,负小,零,正小,正中,正大用英文字头缩写为NB,NM,NS,Z0,PS,PM,PB12(2)定义各模糊变量的模糊子集。定义一个模糊子集,实际上就是要确定模糊子集隶属函数曲线的形状。将确定的隶属函数曲线离散化,就得到了有限个点上的隶属度,便构成了一个相应的模糊变量的模糊子集。理论研究显示,在众多隶属函数曲线中,用正态型模糊变量来描述人进行控制活动时的模糊概念是适宜的。但在实际的工程中,机器对于正态型分布的模糊变量的运算是相当
41、复杂和缓慢的,而三角型分布的模糊变量的运算简单、迅速。因此,控制系统的众多控制器一般采用计算相对简单,控制效果迅速的三角型分布。(3)建立模糊控制器的控制规则。模糊控制器的控制规则是基于手动控制策略,而手动控制策略又是人们通过学习、试验以及长期经验积累而逐渐形成的,存储在操作者头脑中的一种技术知识集合。手动控制过程一般是通过对被控对象过程的一些观测,操作者再根据已有的经验和技术知识,进行综合分析并做出控制决策,调整加到被控对象的控制作用,从而使系统达到预期的目标。手动控制的作用同自动控制系统中的控制器的作用是基本相同的,所不同的是手动控制决策是基于操作系统经验和技术知识,而控制器的控制决策是基
42、于某种控制算法的数值运算。利用模糊集合理论和语言变量的概念,可以把利用语言归纳的手动控制策略上升为数值运算,于是可以采用微型计算机完成这个任务以代替人的手动控制,实现所谓的模糊自动控制13。35精确量的模糊化量化因子是模糊控制器的输入接口,是对输入清晰量进行的放大或缩小变换。为了16使这些清晰值能与语言表述的模糊规则相适配,进行近似推理,必须把它们变换成模糊量,即模糊子集。将精确量数字量转换为模糊量的过程称为模糊化FUZZIFICATION,或称为模糊量化。精确量只有经过模糊化处理,变为模糊量,才能便于实现模糊控制算法。在经过模糊逻辑推理之后输出的结论是模糊量,用它们不能直接推动执行机构进行控
43、制,需要变换成清晰量。把模糊量变换成清晰量的过程,称为清晰化。过程参数的变化范围是各不相同的,为了统一到指定的论域中来,模糊化的第一个任务是进行论域变换,过程参数的实际变化范围成为基本论域。可以通过变换系数(量化因子)实现由基本论域到指定论域的变换。模糊化的第二个任务是求得输入对应语言变量的隶属度。语言变量的隶属函数有两种表示方式,即离散方式和连续方式。离散方式是指去论域中的离散点(整数值)及这些点的隶属度来描述一个语言变量14。模糊化一般采用如下两种方法(1)把精确量离散化。如把在3,3之间变化的连续量分为七个档次,每一档对应一个模糊集,这样处理使模糊化过程简单。否则,将每一精确量对应一个模
44、糊子集,有无穷多个模糊子集,使模糊化过程复杂化。在3,3区间的离散化了的精确量与表示模糊语言的模糊量建立了关系,这样就可以将3,3之间的任意的精确量用模糊量Y来表示,例如在3附近称为负大,用NB表示,在2附近称为负中,用NM表示。实际上的输入变量如误差和误差的变化等都是连续变化的量,通过模糊化处理,把连续量离散为3,3之间有限个整数值的做法是为了使模糊推理合成方便。(2)第二种方法更为简单,它是将在某区间的精确量X模糊化成这样的一个模糊子集,它在点X处隶属度为1,除X点外其余各点的隶属度均取0。不过可想而之这种模糊化的效果不理想15。经过模糊逻辑推理后,输出的是模糊集合,由于它是多条模糊控制规
45、则所得结论的综合,其隶属函数多数是分段、不规则的形状。清晰化的目的就是把它们等效成一个清晰值,即映射到一个代表性的数值上,这个任务由清晰化模块完成。清晰化的方法就是按照“言之有理、计算方便和具有连续性”的原则,在模糊集合的论域中找一个清晰数值来代表它。常用的有面积平分法、面积中心法和最大隶属度法,由于最大隶属度法具有直观合理和计算方便的优点,实用中用得较多。36模糊推理及其模糊量去模糊化方法建立的模糊控制规则要经过模糊推理才能决策出控制变量的一个模糊子集,它是一个模糊量而不能直接控制被控对象,还需要采取合理的方法将模糊量转换为精确量,以便最好地发挥出模糊推理结果的决策效果。把模糊量转换为精确量
46、的过程称为清晰化,又称解模糊DEFUZZIFICATION、去模糊化、逆模糊化、反模糊化。37模糊控制规则表模糊控制规则是模糊控制器的核心,它相当于传统控制系统中的校正装置或补偿器(如工业中经常使用的PID控制器),是设计控制系统的主要内容。模糊控制规则的生成方法大体上有两种一种是根据操作人员或专家对系统进行控制的实际操作经验和知识,归纳总结得出的;另一种是对系统进行测试实验,从分析系统的输入输出数据中,归纳总结出来的。模糊控制表一般由两种方法获得,一种是采用离线算法,以模糊数学为基础进行合成推理,根据采样得到的误差E、误差的变化EC,计算出相应的控制量变化IJU。另一种是以操作人员的经验为依
47、据,由人工经验总结得到模糊控制表。然而这种模糊控制表是非常粗糙的,引起粗糙的原因,是确定模糊子集时,完全靠人的主观而定,17不一定符合实际情况,在线控制时有必要对模糊控制表进行在线修正16。由于E的模糊分割数是7,EC的模糊分割数也是7。我们建立的模糊系统共包括49条规则。所表示的规则依次为1R如果E是NBANDEC是NB则U是NB2R如果E是NBANDEC是NM则U是NB3R如果E是NBANDEC是NS则U是NM48R如果E是PBANDEC是PM则U是PM49R如果E是PBANDEC是PB则U是PB在VIEW菜单中选择RULES命令,可以查看模糊推理规则。38模糊控制器的维数确定输入模糊控制
48、器的独立变量,常被看作是向量,其分量的个数称为模糊控制器的维数。常用的模糊控制器结构,按维数分为下述几类(1)一维模糊控制器如图31所示,它的输入变量往往选择为受控变量和输入给定值的偏差E,但却很难反映过程的动态特性品质,因而往往被用于一阶被控对象。图31一维模糊控制器(2)二维模糊控制器如图32所示,它的两个输入变量基本上都选用受控变量值和输入给定值的偏差E和偏差EC,由于它们能够严格地反映受控过程中输出量的动态特性,故在控制效果上要比一维控制器好得多,目前采用较广泛。图32二维模糊控制器(3)三维模糊控制器如图33所示,它的三个输入分别为系统偏差量E,偏差微分EC,偏差的二阶微分ECC。但
49、由于这种模糊控制器结构复杂,推理运算时间长。因此,适用于动态特性的要求特别高的场合。E二维模糊控制器D/DTU一维模糊控制器UEE18图33三维模糊控制器D/DTD/DTEEECECCU三维模糊控制器19第4章PID控制器41PID的概述常规PID控制器具有算法简单、稳定性好、可靠性高的特点,加之设计容易、适应面宽,是过程控制中应用最为广泛的一类基本控制器,它对于各种线性定常系统的控制,都能够获得满意的控制效果,尤其适用于被控对象参数固定、非线性不恨严重的系统。但是,工业生产过程中被控对象的负荷多变、干扰因素复杂,要获得满意的控制效果,就需要对PID的参数不断地进行在线调整。有时由于这些参数的变化无常,往往没有确定不变的数学模型和规律可循,利用模糊控制器调节它们不失为一种实用、简便、可行的选择。模糊控制器能充分利用操作人员进行实时非线性调节的成功实践操作经验,充分发挥PID控制器的优良控制作用,使整个系统达到最佳控制效果。PID的发展过程,很大程度上是它的参数整定方法和参数自适应方法的研究过程。自ZIEGLER和NICHOLS提出PID参数整定方法起,有许多技术已经被用于PID控制器的手动和自动整定。PID控制是迄今为止最通用的控制方法。大多数反馈控制用该方法或其较小的变形来控制。