自动控制原理胡寿松第四版课后答案.doc

上传人:sk****8 文档编号:4304957 上传时间:2019-10-20 格式:DOC 页数:23 大小:892KB
下载 相关 举报
自动控制原理胡寿松第四版课后答案.doc_第1页
第1页 / 共23页
自动控制原理胡寿松第四版课后答案.doc_第2页
第2页 / 共23页
自动控制原理胡寿松第四版课后答案.doc_第3页
第3页 / 共23页
自动控制原理胡寿松第四版课后答案.doc_第4页
第4页 / 共23页
自动控制原理胡寿松第四版课后答案.doc_第5页
第5页 / 共23页
点击查看更多>>
资源描述

1、13解:系统的工作原理为:当流出增加时,液位降低,浮球降落,控制器通过移动气动阀门的 开度,流入量增加,液位开始上。当流入量和流出量相等时达到平衡。当流出量减小时,系 统的变化过程则相反。希望液位流出量高度液位高度控制器气动阀水箱流入量浮球图一14(1) 非线性系统(2) 非线性时变系统(3) 线性定常系统(4) 线性定常系统(5) 线性时变系统(6) 线性定常系统2-1解:显然,弹簧力为 kx(t ) ,根据牛顿第二运动定律有:F (t ) kx(t) = m移项整理,得机械系统的微分方程为:d 2 x(t )dt 22m d x(t ) + kx(t ) = F (t )dt 2对上述方程

2、中各项求拉氏变换得:ms 2 X (s) + kX (s) = F (s)所以,机械系统的传递函数为:G(s) =X (s) =F (s)1ms 2 + k2-2解一:由图易得:i1 (t )R1 = u1 (t ) u2 (t ) uc (t ) + i1 (t )R2 = u2 (t ) duc (t ) i1 (t ) = Cdt由上述方程组可得无源网络的运动方程为:C ( R + R ) du2 (t ) u (t ) = CRdu1 (t ) u (t ) 12dt+ 22+ 1dt对上述方程中各项求拉氏变换得:C (R1 + R2 )sU 2 (s) + U 2 (s) = CR2

3、 sU1 (s) + U1 (s) 所以,无源网络的传递函数为:G(s) = U 2 (s) =U1 (s)1 + sCR21 + sC(R1 + R2 )解二(运算阻抗法或复阻抗法):U (s) 1+ R21 + R Cs 2 = Cs = 2 U (s) R + 1 + R1 + ( R + R )Cs1121Cs22-5解:按照上述方程的顺序,从输出量开始绘制系统的结构图,其绘制结果如下图所示:依次消掉上述方程中的中间变量 X 1 , X 2 , X 3 , 可得系统传递函数为:C(s) =R(s)G1 (s)G2 (s)G3 (s)G4 (s)1 + G2 (s)G3 (s)G6 (s

4、) + G3 (s)G4 (s)G5 (s) + G1 (s)G2 (s)G3 (s)G4 (s)G7 (s) G8 (s)2-6解: 将 G1 (s) 与 G1 (s) 组成的并联环节和 G1 (s) 与 G1 (s) 组成的并联环节简化,它们的等效传递函数和简化结构图为:G12 (s) = G1 (s) + G2 (s)G34 (s) = G3 (s) G4 (s) 将 G12 (s), G34 (s) 组成的反馈回路简化便求得系统的闭环传递函数为:2-7解:C(s) =R(s)G12 (s)1 + G12 (s)G34 (s)=G1 (s) + G2 (s)1 + G1 (s) + G2

5、 (s)G3 (s) G4 (s)由上图可列方程组:E (s)G1 (s) C (s)H 2 (s)G2 (s) = C (s)R(s) H1(s) C (s)G2 (s)= E (s)联列上述两个方程,消掉 E (s) ,得传递函数为:C(s) =R(s)G1 (s)G2 (s)1 + H1 (s)G1 (s) + H 2 (s)G2 (s)联列上述两个方程,消掉 C (s) ,得传递函数为:E(s) =R(s)1 + H 2 (s)G2 (s)1 + H1 (s)G1 (s) + H 2 (s)G2 (s)2-8解:将反馈回路简化,其等效传递函数和简化图为:0.41G (s) = 2s +

6、 1 =1 + 0.4 * 0.52s + 115s + 3将反馈回路简化,其等效传递函数和简化图为:12 2G (s) = s + 0.3s + 1 =5s + 32231 + 0.45s + 4.5s+ 5.9s + 3.4(s + 0.3s + 1)(5s + 3)将反馈回路简化便求得系统的闭环传递函数为:0.7 * (5s + 3) o (s) = 5s 3 + 4.5s 2 + 5.9s + 3.4 =3.5s + 2.1i (s)1 + 0.7 * Ks(5s + 3)5s 3+ (4.5 + 3.5K )s 2+ (5.9 + 2.1K )s + 3.45s 3-3解:该二阶系统

7、的最大超调量: p = e /1 2*100%当 p= 5% 时,可解上述方程得: = 0.69当 p= 5% 时,该二阶系统的过渡时间为:t s 3wn所以,该二阶系统的无阻尼自振角频率 wn3-4解: 3t s=30.69 * 2= 2.17由上图可得系统的传递函数:10 * (1 + Ks)C (s) =R(s)s(s + 2)1 + 10 * (1 + Ks)s(s + 2)=10 * (Ks + 1)2s + 2 * (1 + 5K )s + 10所以 wn =10 ,wn = 1 + 5K 若= 0.5 时, K 0.116所以 K 0.116 时,= 0.5 系统单位阶跃响应的超

8、调量和过渡过程时间分别为: p = e /1 2*100% = e0.5*3.14 /10.52*100% 16.3%ts =3wn=30.5 * 1.910 加入 (1 + Ks ) 相当于加入了一个比例微分环节,将使系统的阻尼比增大,可以有效地减小原系统的阶跃响应的超调量;同时由于微分的作用,使系统阶跃响应的速度(即变化率)提高了,从而缩短了过渡时间:总之,加入 (1 + Ks ) 后,系统响应性能得到改善。3-5解:由上图可得该控制系统的传递函数:C(s) =110K1R(s)二阶系统的标准形式为:C (s)R(s)s 2 + (10 + 1)s + 10Kw 2= n s 2 + 2w

9、 s + w2nn所以w2n = 10K12wn = 10 + 1由p= e /1 2*100%t p =wn1 2 p = 9.5%t p = 0.5可得 = 0.62wn = 10K1 = 0.6wn = 7.85由和2wn = 10 + 1wn = 7.85可得:K1 = 6.16 = 0.84t s 3wn= 0.643-6解: 列出劳斯表为:因为劳斯表首列系数符号变号 2 次,所以系统不稳定。 列出劳斯表为:因为劳斯表首列系数全大于零,所以系统稳定。 列出劳斯表为:因为劳斯表首列系数符号变号 2 次,所以系统不稳定。3-7解:系统的闭环系统传递函数:K (s +1)C (s) =R(

10、s)=s(2s +1)(Ts +1)=1 + K (s +1)s(2s +1)(Ts +1)K (s +1)K (s +1)s(2s +1)(Ts +1) + K (s +1)2Ts3 + (T + 2)s 2 + (K +1)s + K列出劳斯表为:s32TK +1s2T + 2Ks1(K +1)(T + 2) 2KT T + 2s0KT 0 ,T + 2 0 , (K + 1)(T + 2) 2KT T + 2 0 , K 0T 0K 0 , (K + 1)(T + 2) 2KT 0(K +1)(T + 2) 2KT = (T + 2) + KT + 2K 2KT= (T + 2) KT

11、+ 2K = (T + 2) K (T 2) 0K (T 2) (T + 2)3-9解:由上图可得闭环系统传递函数:C (s) =KK2 K32 3 2 3 2 3R(s)(1 + KK K a)s2 KK K bs KK K代入已知数据,得二阶系统特征方程:(1 + 0.1K )s2 0.1Ks K = 0列出劳斯表为:s21 + 0.1K Ks1 0.1Ks0 K可见,只要放大器10 K 0 ,系统就是稳定的。3-12解:系统的稳态误差为:ess= lim e(t ) = lim sE (s) = limsR(s)t s0s 0 1 + G0 (s) G0 (s) =10s(0.1s +

12、1)(0.5s + 1)系统的静态位置误差系数:K= lim G(s) = lim10= ps 00s 0 s(0.1s + 1)(0.5s + 1)系统的静态速度误差系数:K = lim sG(s) = lim10s= 10vs 00s 0 s(0.1s + 1)(0.5s + 1)系统的静态加速度误差系数:K = lim s 2 G(s) = lim10s 2= 0as00s0 s(0.1s + 1)(0.5s + 1)当 r (t ) = 1(t ) 时, R(s) = 1sess= lims* 1 = 0当 r (t ) = 4t 时, R(s) =s0 10s1 +s(0.1s +

13、1)(0.5s + 1)4s 2e= lims* 4 = 0.4sss 0 s 2当 r (t ) = t 2 时, R(s) =1 +10s(0.1s + 1)(0.5s + 1)2s 3ess= lims 01 +s* 2 = 10s 3s(0.1s + 1)(0.5s + 1)当 r(t) = 1(t) + 4t + t 2 时, R(s) = 1 + 4 + 2ss 2s 33-14解:ess = 0 + 0.4 + = 由于单位斜坡输入下系统稳态误差为常值=2,所以系统为 I 型系统设开环传递函数 G(s) =Ks(s2 + as + b)K = 0.5 b闭环传递函数(s) =G(

14、s)=K1 + G(s)s3 + as2 + bs + KQ s = 1 j 是系统闭环极点,因此s3 + as2 + bs + K = (s + c)(s2 + 2s + 2) = s3 + (2 + c)s2 + (2c + 2)s + 2cK = 0.5bK = 2cb = 2c + 2a = 2 + cK = 2a = 3b = 4c = 1所以 G(s) =2。s(s2 + 3s + 4)4-1js js k k = 0k k = 00 k = 0k k k = 00(a)(b)j s js 0 0(c)(d)4-2j s p 3 = 10 p 1 = 0 p 2 = 0p1 = 0

15、,p2 = 0,p3 = 11. 实轴上的根轨迹(, 1)(0, 0)12. n m = 33 条根轨迹趋向无穷远处的渐近线相角为= 180(2q + 1) = 60,180a 3(q = 0,1)渐近线与实轴的交点为n m pi zii =1j =10 0 1 1 a =3. 系统的特征方程为n m= 331+G(s) = 1 +K= 0s2 (s +1)即K = s2 (s +1) = s3 s2dK = 3s2 2s = 0dss(3s + 2) = 0根s1 = 0(舍去)s2 = 0.6674. 令 s = j代入特征方程1+G(s) = 1 +K= 0s2 (s +1)s2 (s

16、+1) + K =0( j )2 ( j +1) + K =0 2 ( j +1) + K =0K 2 j =0K 2 =0 = 0=0(舍去)与虚轴没有交点,即只有根轨迹上的起点,也即开环极点p1,2 = 0在虚轴上。25-1G(s) =50.25s +1G( j ) =50.25 j +1A( ) =5 (0.25 )2 +1() = arctan(0.25)输入 r(t) = 5 cos(4t 30) = 5 sin(4t + 60)=4A(4) =5(0.25 * 4)2 +1= 2.5 2(4) = arctan(0.25 * 4) = 45系统的稳态输出为c(t ) = A(4)

17、* 5 cos4t 30 + (4)= 2.5 2 * 5 cos(4t 30 45)= 17.68 cos(4t 75) = 17.68 sin(4t +15)sin = cos(90 ) = cos( 90) = cos( + 270)5-3或者,c(t ) = A(4) * 5 sin4t + 60 + (4)= 2.5 2 * 5 sin(4t + 60 45)= 17.68 sin(4t +15)11(2)G(s) =(1 + s)(1 + 2s)G( j ) =(1 + j )(1 + j 2 )A( ) =1(1 + 2 )(1 + 4 2 )() = arctan arctan

18、 2() = arctan arctan 2 = 90arctan + arctan 2 = 90 = 1/(2) 2 = 1/ 2A( ) =1=(1 +1 / 2)(1 + 4 *1/ 2)2 = 0.473与虚轴的交点为(0,-j0.47)jY()0 = -j0.47 = 01X ()1(3) G(s) =1s(1 + s)(1 + 2s)G( j ) =1j (1 + j )(1 + j2 )A( ) =1(1 + 2 )(1 + 4 2 )() = 90 arctan arctan 2() = 90 arctan arctan 2 = 180arctan + arctan 2 = 9

19、0 = 1/(2) 2 = 1/ 2A( ) =11/2 (1 +1/ 2)(1 + 4 *1/ 2)= 2 = 0.673与实轴的交点为(-0.67,-j0)-0.670 = 0.707 = 0jY () = X ()(4) G(s) =1s2 (1 + s)(1 + 2s)G( j ) =1( j )2 (1 + j )(1 + j 2 )A( ) = 21(1 + 2 )(1 + 4 2 )( ) = 180 arctan arctan 2() = 180 arctan arctan 2 = 270arctan + arctan 2 = 90 = 1/(2) 2 = 1/ 2A( ) =

20、1= 2 (1/ 2) (1 +1/ 2)(1 + 4 *1/ 2)32 = 0.94与虚轴的交点为(0,j0.94) = 0.707 = 00.940jY() = X ()25-4(2)1 = 0.5 ,2 = 1 , k = 1 , = 0L ( ) ( d B )00.01-20dB0.10.5-20dB /dec1 10-40dB /dec-40dB(3)1 = 0.5 ,2 = 1 , k = 1 , = 1L ( ) ( d B )-20dB /dec20dB -40dB /dec00.010.10.51 10-20dB-40dB-60dB /dec(4)1 = 0.5 ,2 =

21、1 , k = 1 , = 2L ( )(d B )60dB-40dB /dec40dB20dB -60dB /dec00.010.10.51 10-20dB-40dB-80dB /dec5-6G(s) =1s 1是一个非最小相位系统3G( j ) =1=1(1 j ) =1e j ( 180o +arctg )j 11 + 21 + 2G(s) =1s +1是一个最小相位系统G( j ) =1=1(1 j ) =1e jarctgj +1 1 + 21 + 25-8(a) = 0 = -10X ( ) = 0 +系统开环传递函数有一极点在 s 平面的原点处,因此乃氏回线中半径为无穷小量 的半

22、圆弧 对应的映射曲线是一个半径为无穷大的圆弧: :0 0+ ; :90 0 90; () :90 0 90N=P-Z, Z=P-N=0-(-2)=2闭环系统有 2 个极点在右半平面,所以闭环系统不稳定(b)jY ( ) = 0 = 0+ = -1 0X ( ) 4系统开环传递函数有 2 个极点在 s 平面的原点处,因此乃氏回线中半径为无穷小量 的半圆弧对应的映射曲线是一个半径为无穷大的圆弧: :0 0+ ; :90 0 90; () :180 0 180N=P-Z, Z=P-N=0-0=0闭环系统有 0 个极点在右半平面,所以闭环系统稳定5-10KK2.28K(1)G(s)H (s) =Ts

23、+1()()12.28s +1=s + 2.281 = 2.28090 ( )G s H s = K1= K1=2.28K(2)( )( ) ( )()s Ts +1s12.28s +1s(s + 2.28)901 = 2.28180 ( )K s +11K 0.5s +14K (s + 0.5)(3)G(s)H (s) =s Ts +1 s1=s (s + 2)222s +12L ( )( d B )-40dB /dec-20dB /decab 00.512-40dB /dec520 lg 1= a 20 lg K + 20 lg 1= 40 lg 120 lg K = 20 lg 10.5

24、20 lg(K )1 = 20 lg 20.50.5K = 1/ 2 = 0.50.5G(s)H (s) = 4K (s + 0.5) = 2(s + 0.5)s2 (s + 2)s2 (s + 2)90()()1 = 0.52 = 2180 ( )5-11 = 0jY () = +0 = (-1,j0)X () = 0+G(s)H (s) =Ks(s +1)(3s +1) G( j )H ( j ) =Kj ( j +1)(3 j +1)( ) = 90 arctan arctan 3 = 180arctan + arctan 3 = 90 = 1/(3) 2 = 1/ 3A( ) =K1

25、/3 (1 +1 / 3)(1 + 9 *1/ 3)= 3 K = 14Kc = 4/3 = 1.3366-2 (1)6 2G(s) = n nns(s2 + 4s + 6)s(s2 + 2 s + 2 ) 2 = 6 =6 =2.45,2 =4 =4= 2= 0.816n n n2n 6K = 1所以,c = 120lgK = 0 2 / ( ) = 90 arctgcn 2 * 0.816 *1/ 2.45 = 90 arctgc 1 2 / 2 1 1/ 2.452cn = 90 arctg 2 * 0.816 *1 / 2.45 = 90 arctg 0.666 = 90 arctg

26、0.79951 1 / 2.452 0.833 = 90 38.64 = 128.64 = 180 + (c ) = 180 128.64 = 51.36L( )(dB)50403020100-10-20-30-400.01-20dB /dec0.1n12.4510-60dB /dec(2)1 = 1,2 =1/0.2=5 2 / ( ) = 90 arctgcn + arctgc arctg cc 1 2 / 2 cn 1 2 15 = 128.64 + arctg 1 arctg 1 = 128.64 + 45 11.31 = 94.95 = 180 + (c ) = 180 94.95

27、= 85.051课后答案网L() (dB )50403020100-10-200.01-20dB /dec0.1n12.4520dB /decG c5 10-30-40-40dB /dec -60dB /dec-60dB /dec6-5 (1)G(s) =10s(0.5s +1)(0.1s +1) = 1, 20 lg K =20lg10=20dB1 = 1/ 0.5 = 2,2 = 1 / 0.1 = 101 = 2时, L(1 ) = 20 20(lg 2 lg1) = 20lg10 20 lg 2 = 20lg5 = 14dB2 = 10时, L(2 ) = 14 40(lg10 lg

28、2) = 13.96dB所以,1 c 2L(1 ) = 40(lg c lg 2) = 40(lg c / 2) = 14dBc = 4.48 (c ) = 90 arctg 0.5c arctg 0.1c = 90 arctg 2.24 arctg 0.448= 90 65.94 24.13 = 180.07 = 180 + (c ) = 180 180.07 = 0.07L ( )(dB)50403020100-10-20-30-400.1-20dB /dec1 2-40dB /dec c 10-60dB /dec1002(2)G(s)Gc (s) =10(0.33s +1)s(0.5s

29、+1)(0.1s +1)(0.033s +1) = 1, 20 lg K =20lg10=20dB1 = 1 / 0.5 = 2,2 = 1/ 0.33 = 3,3 = 1 / 0.1 = 10,4 = 1/ 0.033 = 302 = 3时, L(1 ) L(2 ) = 40(lg 2 lg 1 ) 14 L(2 ) = 40(lg 4.35 lg 2)L(2 ) = 7dBL(3 = 10) L(2 = 3) = 20(lg 3 lg 2 ) = 3.37dB所以2 c 2 3L(2 ) = 20(lg c 2 lg 2 ) = 20(lg c 2 / 3) = 7dBc 2 = 6.72

30、 (c ) = 90 arctg 0.5c 2 arctg 0.1c 2 + arctg 0.33c 2 arctg 0.033c 2= 90 arctg 3.36 arctg 0.672 + arctg 2.22 arctg 0.222= 90 73.43 33.90+ 65.7512.52 = 144.1 2 = 180 + (c 2 ) = 180 144.1 = 35.9L( )(dB)504030-20dB /dec20100-40dB /decc 220dB /decG c10-10-200.1123c130G cG100-30-40-20dB /dec-40dB /dec-60dB /dec-60dB /dec校正环节为相位超前校正,校正后系统的相角裕量增加,系统又不稳定变为稳定,且有一定的稳定裕度,降低系统响应的超调量;剪切频率增加,系统快速性提高;但是高频段增益提 高,系统抑制噪声能力下降。3

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 重点行业资料库 > 自然科学

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。