1、腾远堂培训学校专用资料 一次函数专题复习知识点结构:1.一次函数的概念:函数(,为常数,)叫做的一次函数。(1)作为一次函数自变量的最高次数是1,且其系数,这两个条件缺一不可。(2)函数()中可以为任意常数,当时,一次函数就成正比例函数(为常数,且) 因此正比例函数是一次函数的特例,但一次函数不一定是正比例函数。2 一次函数的图象:(重点,请牢记)(1)正比例函数y=kx的图象是经过(0,0),(1,k)的一条直线;(2)一次函数y=kx+b的图象是经过(0,b)(k/b,0)的一条直线.3、一次函数的性质:(重点,请牢记) b=0b0k0经过第一、三象限经过第一、三、四象限经过第一、二、三象
2、限图象从左到右上升,y随x的增大而增大k0经过第二、四象限经过第二、三、四象限经过第一、二、四象限图象从左到右下降,y随x的增大而减小4. 待定系数法确定一次函数解析式 5.有关平移问题 6.一次函数图像的应用 考点例题分析及练习:考点一:函数定义1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为是x的函数。判断A是否为B的函数,只要看B取值确定的时候,A是否有唯一确定的值与之对应1、下列函数关系式中不是函数
3、关系式的是( )A. B. C. D. 2、下列各图中表示y是x的函数图像的是 ( ) xyOAxyOBxyODxyOC 考点二:一次函数概念的相关题目1.函数:y=-x x;y=-1;y=;y=x2+3x-1;y=x+4;y=3. 6x, 一次函数有_ _;正比例函数有_(填序号).2.函数y=(k2-1)x+3是一次函数,则k的取值范围是( )A.k1 B.k-1 C.k1 D.k为任意实数3.是正比例函数,则m= 。考点三:一次函数图像问题(经过的象限、判断k或b的范围)直线经过第一、二、三象限 直线经过第一、三、四象限直线经过第一、二、四象限 直线经过第二、三、四象限图4Oxy1、若一
4、次函数的函数值随的增大而减小,且图象与轴的正半轴相交,那么对和的符号判断正确的是( ).AB C D2、已知一次函数y(a1)x+b的图象如图4所示,那么a的取值范围是( )A.a1B.a1C.a0D.a03.若 ab0,bc0且随的增大而减小,则此函数的图象不经过( )A、第一象限 B、第二象限 C、第三象限 D、第四象限6、若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是( ) A、k3 B、0k3 C、0k3 D、0k0)图像上的不同的两点,若t=则( )A . B. C. D. 3.若正比例函数y=(12m)x的图象经过点(x1,y1)和点(x2,y2),当x
5、1x2时,y1y2 ,则m的取值范围是( ) A、m0 C.m D.m4. 在函数 ykx(k0)的图象上有A(1,y1)、B(1,y)、C(2,y)三个点,则下列各式中正确()A、y1y2y3B、y1y3y2C、y3y2y1D、y2y3y1 考点五:图像上经过一点或交点的含义(带入方程(组) 2.若点(3,)在一次函数的图像上,则 3直线一定经过点( )A(1,0) B(1,k) C(0,k) D(0,1)4.一次函数y=ax+b,若a+b=1,则它的图象必经过点( ) A、(-1,-1) B、(-1, 1) C、(1, -1) D、(1, 1)5直线经过(1,2)、(-3,4)两点,求直线
6、与坐标轴围成的图形的面积。6、已知一个正比例函数与一个一次函数交与点P(-2, 2),一次函数与x轴、y轴交与A、B两点,且B(0,6)(1)求两个函数的解析式(2)求AOP的面积7、已知直线AB:与x轴、y轴分别交与点A、B,y轴上点C坐标为(0,10)且COMAOB,求直线CM的解析式yxHOCDBA8、如图,直线y=2x+4与x轴、y轴分别交于点C、A,B点坐标为(4,0),过点B作BDAC于D,BD交OA于点H.请求直线BD的解析式考点六:函数解析式的确定基本思路(1)根据已知条件写出含有待定系数的函数关系式; (2)将x、y的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定
7、系数为未知数的方程; (3)解方程得出未知系数的值; (4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.用待定系数法求一次函数解析式是中考中的热点,是必考内容之一。1. 将直线向下平移4个单位长度后。所得直线的解析式为 2.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为 。3.已知y与2x+1成正比例,且当x=3时,y=6,写出y与x的函数关系式 。4.已知一次函数物图象经过A(-2,-3),B(1,3)两点. 求这个一次函数的解析式. 试判断点P(-1,1)是否在这个一次函数的图象上. 求此函数与x轴、y轴围成的三角形的面积.5. 直线经
8、过点,且平行于直线,则_,_. 6. 已知弹簧的长度 y(厘米)在一定的限度内是所挂重物质量 x(千克)的一次函数现已测得不挂重物时弹簧的长度是6厘米,挂4千克质量的重物时,弹簧的长度是7.2厘米求这个一次函数的关系式7. 等腰三角形的周长为12,底边长为y,腰长为x,求y与x之间的函数关系式,并求自变量x的取值范围考点七、平移 1. 直线y=5x-3向左平移2个单位得到直线 。2. 直线y=x向右平移2个单位得到直线 3. 直线y=2x+1向上平移4个单位得到直线 4. 直线向上平移1个单位,再向右平移1个单位得到直线 。5. 直线向下平移2个单位,再向左平移1个单位得到直线_。6. 过点(
9、2,-3)且平行于直线y=-3x+1的直线是_.7直线m:y=2x+2是直线n向右平移2个单位再向下平移5个单位得到的,而(2a,7)在直线n上,则a=_;考点八:一次函数和几何的关系乙甲20O 1 2 3 4s/kmt/h图210 1.函数与x轴的交点是 ,与y轴的交点是 ,与两坐标轴围成的三角形面积是 。2.甲、乙二人沿相同的路线由A到B匀速行进,A,B两地间的路程为20km.他们行进的路程s(km)与甲出发后的时间t(h)之间的函数图像如图2所示.根据图像信息,下列说法正确的是( )A.甲的速度是4km/hB.乙的速度是10km/hC.乙比甲晚出发1hD.甲比乙晚到B地3h2.已知直线y
10、1= 2x6与y2= ax+6在x轴上交于A,直线y = x与y1 、y2分别交于C、B。(1)求a;(2)求三条直线所围成的ABC的面积。3.已知:一个正比例函数和一个一次函数的图像交于点P(-2、2)且一次函数的图像与y轴的交点Q的纵坐标为4。(1)求这两个函数的解析式;(2)在同一坐标系中,分别画出这两个函数的图像;(3)求PQO的面积。 9、李明准备租用一辆出租车搞个体营运,现有甲乙两家出租车公司可以和他签订合同,设汽车每月行驶千米,应付给甲公司的月租费元,应付给乙公司的月租费是元, 、与之间的函数关系的图象如图所示,请根据图象回答下列问题: (1)分别求出、与之间的函数关系式 (2)
11、根据每月的可能行驶里程,设计租用方案保证租用费最少. (3)若李明估计每月行驶的路程为2300千米时,哪家合算?考点九:两直线的位置关系(1)相交:两直线相交,则可将解析式联立形成方程组,方程组的解就是_(2)平行:两直线平行,则K值_特殊的:垂直: 两直线平行,则K值之积=_典型例题:1、已知直线AB:与x轴、y轴分别交与点A、B,y轴上点C坐标为(0,10)且COMAOB,求点N坐标2、已知直线相交于第四象限,求k的取值范围。CBAxOy3、如图,直线yx+4与y轴交于点A,与直线yx+交于点B,且直线yx+与x轴交于点C,则ABC的面积为4、将直线向下平移m个单位得到的直线是( )A.
12、B . C . D . 5、已知直线经过点(1,6)和(1,2),它和x轴、y轴分别交于B和A;直线经过点(2,4)和(0,3),它和x轴、y轴的交点分别是D和C。(1)求直线和的解析式;(2)求四边形ABCD的面积;(3)设直线与交于点P,求PBC的面积。来源:学科网考点十:用函数的观点看方程(组)、不等式(1)一元一次方程与一次函数的关系任何一元一次方程到可以转化为ax+b=0(a,b为常数,a0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.(2)一次函数与一元一次不等式的关系任
13、何一个一元一次不等式都可以转化为ax+b0或ax+b0(a,b为常数,a0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围.(3)一次函数与二元一次方程组以二元一次方程ax+by=c的解为坐标的点组成的图象与一次函数y=的图象相同.二元一次方程组的解可以看作是两个一次函数y=和y=的图象交点典型例题第16题图1、如图,一次函数的图象经过A、B两点,则关于x的不等式的解 集是 2、直线与直线在同一平面直角坐标中图像的位置如图所示,则关于x的不等式的解集为 考点十一:函数的综合问题1.如图,直线y=2x+4与x轴、y轴分别交于点C、A,B点坐标为(4,0),过
14、点B作BDAC于D,BD交OA于点H.(1) 请求直线BD的解析式;(2) 有两个动点P和Q分别从点C和点O同时沿x轴正方向匀速运动,速度分别为2个单位每秒和1个单位每秒,设PQD的面积为S,点P、点Q的运动时间为t秒,请求S与t之间的函数关系式.(请直接写出相应的自变量t的取值范围);yxHOCDBA(3)请问t为何值时,PQD的面积是BCD的面积的.yxHOCDBA2、已知直线AB:与x轴、y轴分别交与点A、B,y轴上点C坐标为(0,10)(1)求A、B两点坐标(2)动M从A点出发,以每秒1单位长度的速度,沿x轴向左运动,连接CM.设点M的运动时间为t,COM的面积为S,求S与t的函数关系式.(并标出自变量的取值范围)(3)直线AB与直线CM相交于点;点P为y轴上一点,且始终保持PM+PN最短,当t为何值时,COMAOB,并求出此时点P的坐标第 12 页 共 12 页