1、全等三角形中辅助线的添加一.教学内容:全等三角形的常见辅助线的添加方法、基本图形的性质的掌握及熟练应用。二知识要点:1、添加辅助线的方法和语言表述(1)作线段:连接;(2)作平行线:过点作;(3)作垂线(作高):过点作,垂足为;(4)作中线:取中点,连接;(5)延长并截取线段:延长使等于;(6)截取等长线段:在上截取,使等于;(7)作角平分线:作平分;作角等于已知角;(8)作一个角等于已知角:作角等于。2、全等三角形中的基本图形的构造与运用常用的辅助线的添加方法:(1) 倍长中线(或类中线)法:若遇到三角形的中线或类中线(与中点有关的线段),通常考虑倍长中线或类中线,构造全等三角形。(2) 截
2、长补短法:若遇到证明线段的和差倍分关系时,通常考虑截长补短法,构造全等三角形。截长:在较长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;补短:将一条较短线段延长,延长部分等于另一条较短线段,然后证明新线段等于较长线段;或延长一条较短线段等于较长线段,然后证明延长部分等于另一条较短线段。(3) 一线三等角问题(“K”字图、弦图、三垂图):两个全等的直角三角形的斜边恰好是一个等腰直角三角形的直角边。(4) 角平分线、中垂线法:以角平分线、中垂线为对称轴利用”轴对称性“构造全等三角形。(5) 角含半角、等腰三角形的(绕顶点、绕斜边中点)旋转重合法:用旋转构造三角形全等。(6) 构造特
3、殊三角形:主要是30、60、90、等腰直角三角形(用平移、对称和弦图也可以构造)和等边三角形的特殊三角形来构造全等三角形。三、基本模型: (1)ABC中AD是BC边中线方式1: 延长AD到E,使DE=AD,连接BE 方式2:间接倍长,作CFAD于F,作BEAD的延长线于E,连接BE方式3: 延长MD到N,使DN=MD,连接CD (2) 由ABEBCD导出 由ABEBCD导出 由ABEBCD导出BC=BE+ED=AB+CD ED=AE-CD EC=AB-CD(3)角分线,分两边,对称全等要记全角分线+垂线,等腰三角形必呈现(三线合一)(4) 旋转: 方法:延长其中一个补角的线段(延长CD到E,使
4、ED=BM ,连AE或延长CB到F,使FB=DN ,连AF ) 结论:MN=BM+DN AM、AN分别平分BMN和DNM翻折: 思路:分别将ABM和ADN以AM和AN 为对称轴翻折,但一定要证明 M、P、N三点共线.(B+D=且AB=AD)(5)手拉手模型ABE和ACF均为等边三角形 结论:(1)ABFAEC;(2)B0E=BAE=60(“八字型”模型证明);(3)OA平分EOF拓展: 条件:ABC和CDE均为等边三角形 结论:(1)、AD=BE (2)、ACB=AOB (3)、PCQ为等边三角形 (4)、PQAE (5)、AP=BQ (6)、CO平分AOE (7)、OA=OB+OC (8)、
5、OE=OC+OD (7),(8)需构造等边三角形证明)ABD和ACE均为等腰直角三角形 结论:(1)、BE=CD (2)BECD ABEF和ACHD均为正方形 结论:(1)、BDCF (2)、BD=CF变形一:ABEF和ACHD均为正方形,ASBC交FD于T,求证:T为FD的中点. 方法一: 方法二: 方法三: 变形二:ABEF和ACHD均为正方形,M为FD的中点,求证:ANBC 当以AB、AC为边构造正多边形时,总有:1=2=. 四、典型例题:考点一:倍长中线(或类中线)法:核心母题 已知,如图ABC中,AB=5,AC=3,则中线AD的取值范围是_. 练习:1、如图,ABC中,E、F分别在A
6、B、AC上,DEDF,D是中点,试比较BE+CF与EF的大小.2、 如图,ABC中,BD=DC=AC,E是DC的中点,求证:AD平分BAE. 3、 如图,CE、CB分别是ABC与ADC的中线,且ACB=ABC,求证:CD=2CE。 考点二:截长补短法:核心母题 如图,ADBC,EA,EB分别平分DAB,CBA,CD过点E,求证:AB=AD+BC 练习:1、在ABC中,BAC=60,C=40,AP平分BAC交BC于P,BQ平分ABC交AC于Q,求证:AB+BP=BQ+AQ。 ABCDEO2、如图,在中,AD,CE分别为的平分线,求证:AC=AE+CD 3、如图,在ABC中,AB=AC,D是ABC
7、外一点,且ABD=60,ACD=60求证:BD+DC=AB 4、已知:如图在ABC中,AB=AC,D为ABC外一点,ABD=60,ADB=90BDC,求证:AB=BDDC。 考点三:一线三等角问题(“K”字图)核心母题 已知:如图,在RtABC中,BAC=90,AB=AC,D是BC边上一点,ADE=45,AD=DE,求证:BD=EC. 练习:1、已知:如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED,EFED求证:AE平分BAD 2、两个全等的含30,60角的三角板ADE和三角板ABC如图所示放置,E,A,C三点在一条直线上,连接BD,取BD的中点M,连接ME,MC试判断E
8、MC的形状,并说明理由 3、如图所示,AEAB,BCCD且AB=AE,BC=CD,F、A、G、C、H在同一直线上,如按照图中所标注的数据及符号,则图中实线所围成的图形面积是? 考点四:角平分线、中垂线法核心母题 1、在中,是的平分线是上任意一点求证: 2、已知等腰直角三角形ABC,BC是斜边B的角平分线交AC于D,过C作CE与BD垂直且交BD延长线于E,求证:BD=2CE 3、 如图,ABC的边BC的中垂线DF交BAC的外角平分线AD于D,F为垂足,DEAB于E,且ABAC,求证:BE-AC=AE 考点五:角含半角、等腰三角形的(绕顶点)旋转重合法核心母题 如图,在正方形ABCD中,E、F分别是BC、CD边上的点,EAF=45,求证:EF=BE+DF. 练习 1、如图所示,在五边形ABCDE中,AB=AE,BC+DE=CD,ABC+AED=180求证:AD平分CDE. 2、如图,已知AB=CD=AE=BC+DE=2,ABC=AED=90,求五边形ABCDE的面积 3、如图,在ABC中,ACB=90,AC=BC,P是ABC内一点,且PA=3,PC=2,PB=1求BPC的度数 考点六:构造特殊三角形核心母题 如图,在ABC中,AD交边BC于点D,BAD=15,ADC=4BAD,DC=2BD(1)求B的度数;(2)求证:CAD=B 10