1、导数 压轴题训练1(2014 湖南). 22(2014 湖南).已知常数,函数.(1)讨论在区间上的单调性;(2)若存在两个极值点,且,求的取值范围.【答案】(1)详见解析 【解析】解:(1)对函数求导可得,因为,所以当时,即时,恒成立,则函数在单调递增,当时, ,则函数在区间单调递减,在单调递增的. (2) 解:(1)对函数求导可得,因为,所以当时,即时,恒成立,则函数在单调递增,当时, ,则函数在区间单调递减,在单调递增的. 2.(20)(2014江苏)(本小题满分14分)已知函数,.已知函数有两个零点,且.()求的取值范围;()证明 随着的减小而增大;()证明 随着的减小而增大.(201
2、4四川卷)21(2014四川卷)已知函数,其中,为自然对数的底数。(1)设是函数的导函数,求函数在区间上的最小值;(2)若,函数在区间内有零点,求的取值范围解:(1)因为 所以 又因为, 所以:若,则,所以函数在区间上单增,若,则,于是当时,当时,所以函数在区间上单减,在区间上单增,若,则,所以函数在区间上单减,综上:在区间上的最小值为(2)由,又若函数在区间内有零点,则函数在区间内至少有三个单调区间由(1)知当或时,函数即在区间上单调,不可能满足“函数在区间内至少有三个单调区间”这一要求。若,则令()则。由所以在区间上单增,在区间上单减即恒成立于是,函数在区间内至少有三个单调区间又 所以综上
3、,的取值范围为3.(2014陕西卷).(本小题满分14分)设函数,其中是的导函数.,求的表达式;(2) 若恒成立,求实数的取值范围;(3)设,比较与的大小,并加以证明.21. 4.【2014年重庆卷(理20)】已知函数的导函数为偶函数,且曲线在点处的切线的斜率为.(1) 确定的值;(2) 若,判断的单调性;(3) 若有极值,求的取值范围.解:(1),由恒成立知:,故另外联立解出(2)此时,故单调递增。(3)等价于有非最值解,设,则等价于方程在时有非最值解,由双钩函数知:所以,故的取值范围为5.(2014山东).( 本小题满分13分)设函数(为常数,是自然对数的底数)(I)当时,求函数的单调区间
4、;(II)若函数在内存在两个极值点,求k的取值范围。6.( 2014年课标I) (本小题满分12分)设函数,曲线在点(1,)处的切线为. (I)求; ()证明:.请考生从第(22)、(23)、(24)三题中任选一题作答。注意:只能做所选定的题目。如果多做,则按所做的第一个题目计分,作答时请用2B铅笔在答题卡上将所选题号后的 方框涂黑。【解析】() 设)(,由条件知,得= 又,所以=a=2, ,故的方程. .6分()依题意当轴不合题意,故设直线l:,设 将代入,得,当,即时,从而+ =又点O到直线PQ的距离,所以OPQ的面积 ,设,则,当且仅当,时等号成立,且满足,所以当OPQ的面积最大时,的方程为: 或. 12分8