反比例函数知识点归纳(重点).doc

上传人:sk****8 文档编号:4320549 上传时间:2019-10-22 格式:DOC 页数:6 大小:156KB
下载 相关 举报
反比例函数知识点归纳(重点).doc_第1页
第1页 / 共6页
反比例函数知识点归纳(重点).doc_第2页
第2页 / 共6页
反比例函数知识点归纳(重点).doc_第3页
第3页 / 共6页
反比例函数知识点归纳(重点).doc_第4页
第4页 / 共6页
反比例函数知识点归纳(重点).doc_第5页
第5页 / 共6页
点击查看更多>>
资源描述

1、反比例函数知识点归纳和典型例题、基础知识(一)反比例函数的概念1()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;3反比例函数的自变量,故函数图象与x轴、y轴无交点(二)反比例函数的图象在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称)(三)反比例函数及其图象的性质1函数解析式:()2自变量的取值范围:3图象:(1)图象的形状:双曲线 越大,图象的弯曲度越小,曲线越平直越小,图象的弯曲度越大(2)图象的

2、位置和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上 图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上4k的几何意义如图1,设点P(a,b)是双曲线上任意一点,作PAx轴于A点,PBy轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是)如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QCPA

3、的延长线于C,则有三角形PQC的面积为 图1 图25说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论(2)直线与双曲线的关系: 当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称(3)反比例函数与一次函数的联系(四)实际问题与反比例函数1求函数解析式的方法:(1)待定系数法;(2)根据实际意义列函数解析式2注意学科间知识的综合,但重点放在对数学知识的研究上(五)充分利用数形结合的思想解决问题三、例题分析1反比例函数的概念(1)下列函数中,y是x的反比例函数的是( )Ay=3x B C3xy=1 D(2)下列函数中,y

4、是x的反比例函数的是( )AB CD2图象和性质(1)已知函数是反比例函数,若它的图象在第二、四象限内,那么k=_若y随x的增大而减小,那么k=_(2)已知一次函数y=ax+b的图象经过第一、二、四象限,则函数的图象位于第_象限(3)若反比例函数经过点(,2),则一次函数的图象一定不经过第_象限(4)已知ab0,点P(a,b)在反比例函数的图象上, 则直线不经过的象限是( )A第一象限 B第二象限 C第三象限 D第四象限(5)若P(2,2)和Q(m,)是反比例函数图象上的两点, 则一次函数y=kx+m的图象经过( )A第一、二、三象限 B第一、二、四象限C第一、三、四象限 D第二、三、四象限(

5、6)已知函数和(k0),它们在同一坐标系内的图象大致是( ) A B C D 3函数的增减性(1)在反比例函数的图象上有两点,且,则的值为( )A正数 B负数 C非正数 D非负数(2)在函数(a为常数)的图象上有三个点,则函数值、的大小关系是( )ABCD(3)下列四个函数中:; y随x的增大而减小的函数有( )A0个 B1个 C2个 D3个(4)已知反比例函数的图象与直线y=2x和y=x+1的图象过同一点,则当x0时,这个反比例函数的函数值y随x的增大而(填“增大”或“减小”)注意,(3)中只有是符合题意的,而是在“每一个象限内” y随x的增大而减小4解析式的确定(1)若与成反比例,与成正比

6、例,则y是z的( )A正比例函数 B反比例函数 C一次函数 D不能确定(2)若正比例函数y=2x与反比例函数的图象有一个交点为 (2,m),则m=_,k=_,它们的另一个交点为_(3)已知反比例函数的图象经过点,反比例函数的图象在第二、四象限,求的值(4)已知一次函数y=x+m与反比例函数()的图象在第一象限内的交点为P (x 0,3)求x 0的值;求一次函数和反比例函数的解析式(5)为了预防“非典”,某学校对教室采用药薰消毒法进行消毒 已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧完后,y与x成反比例(如图所示),现测得药物8分钟燃毕,此时室内空气

7、中每立方米的含药量为6毫克 请根据题中所提供的信息解答下列问题:药物燃烧时y关于x的函数关系式为_,自变量x 的取值范围是_;药物燃烧后y关于x的函数关系式为_研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过_分钟后,学生才能回到教室; 研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10 分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?(3)依题意,且,解得(4)依题意,解得 一次函数解析式为,反比例函数解析式为(5),; 30;消毒时间为(分钟),所以消毒有效5面积计算(1)如图,在函数的图象上有三个点A、B、C,

8、过这三个点分别向x轴、y轴作垂线,过每一点所作的两条垂线段与x轴、y轴围成的矩形的面积分别为、,则( )ABCD 第(1)题图 第(2)题图(2)如图,A、B是函数的图象上关于原点O对称的任意两点,AC/y轴,BC/x轴,ABC的面积S,则( )AS=1 B1S2 CS=2 DS2(3)如图,RtAOB的顶点A在双曲线上,且SAOB=3,求m的值 第(3)题图 第(4)题图(4)已知函数的图象和两条直线y=x,y=2x在第一象限内分别相交于P1和P2两点,过P1分别作x轴、y轴的垂线P1Q1,P1R1,垂足分别为Q1,R1,过P2分别作x轴、y轴的垂线P2 Q 2,P2 R 2,垂足分别为Q 2,R 2,求矩形O Q 1P1 R 1和O Q 2P2 R 2的周长,并比较它们的大小(5)如图,正比例函数y=kx(k0)和反比例函数的图象相交于A、C两点,过A作x轴垂线交x轴于B,连接BC,若ABC面积为S,则S=_ 第(5)题图 6

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 重点行业资料库 > 自然科学

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。