1、二次函数动点问题典型例题等腰三角形问题1. 如图,在平面直角坐标系中,已知抛物线y=ax2+bx的对称轴为x=,且经过点A(2,1),点P是抛物线上的动点,P的横坐标为m(0m2),过点P作PBx轴,垂足为B,PB交OA于点C,点O关于直线PB的对称点为D,连接CD,AD,过点A作AEx轴,垂足为E(1)求抛物线的解析式;(2)填空:用含m的式子表示点C,D的坐标:C(,),D(,);当m=时,ACD的周长最小;(3)若ACD为等腰三角形,求出所有符合条件的点P的坐标面积最大1. 如图,抛物线y=x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(1,0),
2、C(0,2)(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标 2已知:如图,直线y=3x+3与x轴交于C点,与y轴交于A点,B点在x轴上,OAB是等腰直角三角形(1)求过A、B、C三点的抛物线的解析式;(2)若直线CDAB交抛物线于D点,求D点的坐标;(3)若P点是抛物线上的动点,且在第一象限,那么PAB是否有最大面积?若有,求出
3、此时P点的坐标和PAB的最大面积;若没有,请说明理由 3. (2015黔西南州)(第26题)如图,在平面直角坐标系中,平行四边形ABOC如图放置,将此平行四边形绕点O顺时针旋转90得到平行四边形ABOC抛物线y=x2+2x+3经过点A、C、A三点(1)求A、A、C三点的坐标;(2)求平行四边形ABOC和平行四边形ABOC重叠部分COD的面积;(3)点M是第一象限内抛物线上的一动点,问点M在何处时,AMA的面积最大?最大面积是多少?并写出此时M的坐标最短路径1.(2014绵阳)如图,抛物线yax2bxc(a0)的图象过点M(2,),顶点坐标为N(1,),且与x轴交于A、B两点,与y轴交于C点(1
4、)求抛物线的解析式;(2)点P为抛物线对称轴上的动点,当PBC为等腰三角形时,求点P的坐标;(3)在直线AC上是否存在一点Q,使QBM的周长最小?若存在,求出Q点坐标;若不存在,请说明理由 2. (2014泸州)如图,已知一次函数y1=x+b的图象l与二次函数y2=x2+mx+b的图象C都经过点B(0,1)和点C,且图象C过点A(2,0)(1)求二次函数的最大值;(2)设使y2y1成立的x取值的所有整数和为s,若s是关于x的方程=0的根,求a的值;(3)若点F、G在图象C上,长度为的线段DE在线段BC上移动,EF与DG始终平行于y轴,当四边形DEFG的面积最大时,在x轴上求点P,使PD+PE最
5、小,求出点P的坐标平行四边形1. (2015贵州省贵阳,第24题9分)如图,经过点C(0,4)的抛物线y=ax2+bx+c(a0)与x轴相交于A(2,0),B两点(1)a0,b24ac0(填“”或“”);(2)若该抛物线关于直线x=2对称,求抛物线的函数表达式;(3)在(2)的条件下,连接AC,E是抛物线上一动点,过点E作AC的平行线交x轴于点F是否存在这样的点E,使得以A,C,E,F为顶点所组成的四边形是平行四边形?若存在,求出满足条件的点E的坐标;若不存在,请说明理由2. (14分)(2015葫芦岛)(第26题)如图,直线y=x+3与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c经
6、过B、C两点(1)求抛物线的解析式;(2)如图,点E是直线BC上方抛物线上的一动点,当BEC面积最大时,请求出点E的坐标和BEC面积的最大值?(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由3.(2015辽宁抚顺)(第26题,14分)已知,ABC在平面直角坐标系中的位置如图所示,A点坐标为(6,0),B点坐标为(4,0),点D为BC的中点,点E为线段AB上一动点,连接DE经过点A、B、C三点的抛物线的解析式为y=ax2
7、+bx+8(1)求抛物线的解析式;(2)如图,将BDE以DE为轴翻折,点B的对称点为点G,当点G恰好落在抛物线的对称轴上时,求G点的坐标;(3)如图,当点E在线段AB上运动时,抛物线y=ax2+bx+8的对称轴上是否存在点F,使得以C、D、E、F为顶点的四边形为平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由4.(2015梧州,第26题12分)如图,抛物线y=ax2+bx+2与坐标轴交于A、B、C三点,其中B(4,0)、C(2,0),连接AB、AC,在第一象限内的抛物线上有一动点D,过D作DEx轴,垂足为E,交AB于点F(1)求此抛物线的解析式;(2)在DE上作点G,使G点与D点
8、关于F点对称,以G为圆心,GD为半径作圆,当G与其中一条坐标轴相切时,求G点的横坐标;(3)过D点作直线DHAC交AB于H,当DHF的面积最大时,在抛物线和直线AB上分别取M、N两点,并使D、H、M、N四点组成平行四边形,请你直接写出符合要求的M、N两点的横坐标5. (2015甘南州第28题 12分)如图,在平面直角坐标系中,抛物线y=x2+bx+c,经过A(0,4),B(x1,0),C(x2,0)三点,且|x2x1|=5(1)求b,c的值;(2)在抛物线上求一点D,使得四边形BDCE是以BC为对角线的菱形;(3)在抛物线上是否存在一点P,使得四边形BPOH是以OB为对角线的菱形?若存在,求出
9、点P的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由角度问题1. (2015宁德 第24题 14分)已知抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C,O是坐标原点,点A的坐标是(1,0),点C的坐标是(0,3)(1)求抛物线的函数表达式;(2)求直线BC的函数表达式和ABC的度数;(3)P为线段BC上一点,连接AC,AP,若ACB=PAB,求点P的坐标函数应用1. (2015广东茂名23,8分)某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:该产品90天内日销售量(m件)与时间(第x天)满足一次函数关系,部分数据如下表:时间(第x天) 1 3 6 10
10、日销售量(m件) 198 194 188 180 该产品90天内每天的销售价格与时间(第x天)的关系如下表:时间(第x天) 1x50 50x90销售价格(元/件) x+60 100(1)求m关于x的一次函数表达式;(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品哪天的销售利润最大?最大利润是多少?【提示:每天销售利润=日销售量(每件销售价格每件成本)】(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果相似三角形1. (2015辽宁铁岭)(第26题)如图,在平面直角坐标系中,抛物线y=ax2+bx+与x轴交于A(3,0),B(1,0
11、)两点与y轴交于点C,点D与点C关于抛物线的对称轴对称(1)求抛物线的解析式,并直接写出点D的坐标;(2)如图1,点P从点A出发,以每秒1个单位长度的速度沿AB匀速运动,到达点B时停止运动以AP为边作等边APQ(点Q在x轴上方),设点P在运动过程中,APQ与四边形AOCD重叠部分的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式;(3)如图2,连接AC,在第二象限内存在点M,使得以M、O、A为顶点的三角形与AOC相似请直接写出所有符合条件的点M坐标解析式的应用1. (2015天津,第25题10分)(2015天津)已知二次函数y=x2+bx+c(b,c为常数)()当b=2,c=3时,求二
12、次函数的最小值;()当c=5时,若在函数值y=l的怙况下,只有一个自变量x的值与其对应,求此时二次函数的解析式;()当c=b2时,若在自变量x的值满足bxb+3的情况下,与其对应的函数值y的最小值为21,求此时二次函数的解析式综合练习1. (2015辽宁阜新)(第18题,12分)如图,抛物线y=x2+bx+c交x轴于点A(3,0)和点B,交y轴于点C(0,3)(1)求抛物线的函数表达式;(2)若点P在抛物线上,且SAOP=4SBOC,求点P的坐标;(3)如图b,设点Q是线段AC上的一动点,作DQx轴,交抛物线于点D,求线段DQ长度的最大值2. (2015黑龙江省大庆,第28题9分)已知二次函数
13、y=x2+bx4的图象与y轴的交点为C,与x轴正半轴的交点为A,且tanACO=(1)求二次函数的解析式;(2)P为二次函数图象的顶点,Q为其对称轴上的一点,QC平分PQO,求Q点坐标;(3)是否存在实数x1、x2(x1x2),当x1xx2时,y的取值范围为y?若存在,直接写在x1,x2的值;若不存在,说明理由3. (2015北海,第26题14分)如图1所示,已知抛物线y=x2+4x+5的顶点为D,与x轴交于A、B两点,与y轴交于C点,E为对称轴上的一点,连接CE,将线段CE绕点E按逆时针方向旋转90后,点C的对应点C恰好落在y轴上(1)直接写出D点和E点的坐标;(2)点F为直线CE与已知抛物线的一个交点,点H是抛物线上C与F之间的一个动点,若过点H作直线HG与y轴平行,且与直线CE交于点G,设点H的横坐标为m(0m4),那么当m为何值时,SHGF:SBGF=5:6?(3)图2所示的抛物线是由y=x2+4x+5向右平移1个单位后得到的,点T(5,y)在抛物线上,点P是抛物线上O与T之间的任意一点,在线段OT上是否存在一点Q,使PQT是等腰直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由14