数学归纳法典型例题.doc

上传人:sk****8 文档编号:4329364 上传时间:2019-10-22 格式:DOC 页数:4 大小:104.50KB
下载 相关 举报
数学归纳法典型例题.doc_第1页
第1页 / 共4页
数学归纳法典型例题.doc_第2页
第2页 / 共4页
数学归纳法典型例题.doc_第3页
第3页 / 共4页
数学归纳法典型例题.doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

数学归纳法典型例题 1. 用数学归纳法证明:时,。 2. 。 3. 用数学归纳法证明:对一切大于1的自然数n,不等式成立。 4. 用数学归纳法证明:能被9整除。 5.由下列各式:,,你能得出怎样的结论?并进行证明。 1.解析:当时,左边,右边,左边=右边,所以等式成立。假设时等式成立,即有,则当时,所以当时,等式也成立。由,可知,对一切等式都成立。2.解析:(1)当时,左边,右边,命题成立。(2)假设当时命题成立,即那么当时,左边。上式表明当时命题也成立。由(1)(2)知,命题对一切正整数均成立。3.解析:当时,左=,右,左右,不等式成立。假设时,不等式成立,即,那么当时,时,不等式也成立。由,知,对一切大于1的自然数n,不等式都成立。4.解析:方法一:令,(1)能被9整除。(2)假设能被9整除,则能被9整除。由(1)(2)知,对一切,命题均成立。方法二:(1),原式能被9整除,(2)若,能被9整除,则时时也能被9整除。由(1),(2)可知,对任何,能被9整除。5. 解:对所给各式进行观察比较,注意各不等式左边最后一项的分母特点:,猜想为,对应各式右端为。归纳得一般结论当时,结论显然成立。假设当时,结论成立,即成立,则当时,即当时结论也成立。由可知对任意,结论都成立。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 重点行业资料库 > 自然科学

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。