点差法整理版.doc

上传人:sk****8 文档编号:4336960 上传时间:2019-10-23 格式:DOC 页数:6 大小:245.34KB
下载 相关 举报
点差法整理版.doc_第1页
第1页 / 共6页
点差法整理版.doc_第2页
第2页 / 共6页
点差法整理版.doc_第3页
第3页 / 共6页
点差法整理版.doc_第4页
第4页 / 共6页
点差法整理版.doc_第5页
第5页 / 共6页
点击查看更多>>
资源描述

1、“点差法”巧解椭圆中点弦题型1、 重要结论及证明过程在椭圆(0)中,若直线与椭圆相交于M、N两点,点是弦MN的中点,弦MN所在的直线的斜率为,则. 证明:设M、N两点的坐标分别为、,则有,得又 同理可证,在椭圆(0)中,若直线与椭圆相交于M、N两点,点是弦MN的中点,弦MN所在的直线的斜率为,则.二、典型例题1 、设椭圆方程为,过点的直线交椭圆于点A、B,O为坐标原点,点P满足,点N的坐标为.当绕点M旋转时,求:(1)动点P的轨迹方程; (2)的最大值和最小值.2 、在直角坐标系中,经过点且斜率为的直线与椭圆有两个不同的交点P和Q.(1)求的取值范围;(2)设椭圆与轴正半轴、轴正半轴的交点分别

2、为A、B,是否存在常数,使得向量与共线?如果存在,求的取值范围;如果不存在,请说明理由.3、已知椭圆(0)的左、右焦点分别为、,离心率,右准线方程为.() 求椭圆的标准方程;() 过点的直线与该椭圆相交于M、N两点,且,求直线的方程.4 、已知椭圆(0)的离心率为,过右焦点F的直线与C相交于A、B两点. 当的斜率为1时,坐标原点O到的距离为.(1)求的值;(2)C上是否存在点P,使得当绕F转到某一位置时,有成立?若存在,求出所有点P的坐标与的方程;若不存在,说明理由.5. 椭圆C的中心在原点,并以双曲线的焦点为焦点,以抛物线的准线为其中一条准线.(1)求椭圆C的方程;(2)设直线与椭圆C相交于

3、A、B两点,使A、B两点关于直线对称,求的值.“点差法”巧解双曲线中点弦题型2、 重要结论及证明过程 在双曲线(0,0)中,若直线与双曲线相交于M、N两点,点是弦MN的中点,弦MN所在的直线的斜率为,则. 证明过程和椭圆证法相同(略)同理可证,在双曲线(0,0)中,若直线与双曲线相交于M、N两点,点是弦MN的中点,弦MN所在的直线的斜率为,则.二、典型例题1. 已知双曲线,过点作直线交双曲线于A、B两点.(1)求弦AB的中点M的轨迹; (2)若点P恰好是弦AB的中点,求直线的方程和弦AB的长.2.设A 、B是双曲线上两点,点是线段AB的中点.(1)求直线AB的方程;(2)如果线段AB的垂直平分

4、线与双曲线相交于C、D两点,那么A、B、C、D四点是否共圆,为什么?3、双曲线C的中心在原点,并以椭圆的焦点为焦点,以抛物线的准线为右准线.(1)求双曲线C的方程;(2)设直线与双曲线C相交于A、B两点,使A、B两点关于直线对称,求的值.“点差法”巧解抛物线中点弦题型3、 重要结论及证明过程(略)在抛物线中,若直线与抛物线相交于M、N两点,点是弦MN的中点,弦MN所在的直线的斜率为,则.同理可证,在抛物线中,若直线与抛物线相交于M、N两点,点是弦MN的中点,弦MN所在的直线的斜率为,则.注意:能用这个公式的条件:(1)直线与抛物线有两个不同的交点;(2)直线的斜率存在,且不等于零.二、典型例题1、设两点在抛物线上,是AB的垂直平分线.()当且仅当取何值时,直线经过抛物线的焦点F?证明你的结论.()当时,求直线的方程.(理)当直线的斜率为2时,求在y轴上的截距的取值范围.2. 已知抛物线,直线交C于A、B两点,M是线段AB的中点,过M作x轴的垂线交C于点N.()证明:抛物线C在点N处的切线与AB平行;()是否存在实数使,若存在,求的值;若不存在,请说明理由.yO xMBNA 6

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 重点行业资料库 > 自然科学

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。