1、考点一:线段的比1 已知,求的值。2 已知,则的值分别是多少?3 已知,则 4 已知求的值。5 已知,求的值。6 已知,则的值是多少?7 若,且,则的值是多少?8 已知,求的值。()9 已知是ABC的三边,且,试判断ABC的形状。考点二:黄金分割1 如图,已知点C和点D均为线段AB的黄金分割点,CD = 6,求AB。2 已知点M是线段AB的黄金分割点,且,(1)写出线段AB,AM,BM之间的比例式。 (2)如果,求AM,BM的长度。3 已知AB =10,点P和点Q是线段AB的两个黄金分割点,则PQ的长度是多少?4 已知线段,线段是线段的比例中项,且为黄金数,求线段的长度。五如图,以长为2的线段
2、AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF = PD,以AF为边作正方形AMEF,点M在AD上。 (1)求AM,DM的长。 (2)求证: (3)根据(2)的结论,你能找出图中的黄金分割点吗?考点三:相似图形性质一.在ABC中,ACBC,CDAB于D,BC=4,BD=2,则AD的长度是多少?二.如图,在ABC中,ACB = 90,CD是高,若AC =12 ,BC =16,则AD,BD的长度是多少?三.如图梯形ABCD中,,交于O点,AD : BC = 1 : 9,梯形ABCD的面积是50,则AOB的面积是多少?四.如图,E,F分别是矩形ABCD的边AD,B
3、C的中点,若矩形ABCD 矩形EABF,AB = 1,求矩形ABCD的面积。五如右图所示,梯形ABCD中,ADBC,E是AB上的一点,EFBC,并且EF将梯形ABCD分成的两个梯形AEFD、EBCF相似,若AD4,BC9,求AE:EB。考点四:探索相似图形条件1 如图,CD是ABC的斜边AB上的高,BAC的平分线分别交BC,CD于点E,F求证:2 如图,D是AB的中点,CFAB,请问:成立吗?为什么?3 在直角坐标系中,已知点,过点C作直线交轴于点D,使得以D,O,C为顶点的三角形与AOB相似,求点D的坐标。4 已知在平面直角坐标系中,点,点C为线段AB的中点,试问:在轴上,是否存在一点P,使
4、以P,A,C为顶点的三角形与AOB相似,若存在,请求出坐标。5 如图,已知ABC中,C = 90度,D,E分别是AB,AC上的两点,,试说明 ED AB6 如图,矩形ABCD中,点M是BC上的一点,DE AM于E,试说明:7 如图在平面直角坐标系中,已知点A( 0,6),B(8,0),动点P沿A0边从A开始向点O以1个单位长度的速度移动,点Q沿BA从点B开始向点A以2个单位长度的速度移动,如果P,Q同时出发,设时间为,则为何值时,以Q,A,P为顶点的三角形与ABO相似?( )考点五:相似图形的应用1、如图正方形ABCD的边长为2,AE=1,M是CB上一个动点,且CN=1,当CM为何值时AED与
5、以M、N、C为顶点的三角形相似?2、如图,正方形ABCD中,,MN=1,且它的两端在CB、CD上滑动,当AED与以M、N、C为顶点的三角形相似时,求CM的值?3、如图,已知ABC中,A=90,AB=4,AC=3,点E是边AB上一动点,且EFBC。(1) 在AB上是否存在点E运动到某一位置时,使AEF的面积与四边形EBCF的面积相等?如果存在,求出AE的长;如果不存在,简要说明理由。(2) 在AB上是否存在点E运动到某一位置时,使AEF的周长与四边形EBCF的周长相等?如果存在,求出AE的长;如果不存在,简要说明理由。4、 如图,在矩形ABCD中,AB = 12,BC = 6,点P沿AB边从点A
6、开始向点B以每秒2个单位长度的速度移动,点Q沿DA边从点D开始向点A以每秒1个单位长度的速度移动。如果P,Q同时出发,用(秒)表示移动时间()。那么:(1)当时,求QAP的面积(2)当为何值时,以点为顶点的三角形与ABC相似。5、如图所示,在ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,设运动时间为x。(1)当x为何值时,PQABCA?(2)当,求的值;(3)APQ能否与CQB相似?若能,求出AP的长;若不能,请说明理由。6、如图,矩形ABCD中,CHBD,垂足为H,P点是AD上的一个动点(P与A、D不重合),CP与BD交于E点。已知CH ,DHCD513,设AP,四边形ABEP的面积为。(1)求BD的长;(2)用含的代数式表示。7.如图,矩形ABCD中,AD =3, AB = ()动点M,N同时从点B出发,分别沿BA,BC方向运动,速度是1cm/s,过M作垂线交AN于P,CD于Q,当点N到达C时,点M也随之停止,设运动时间为,(1)若时,求PM;(2)若,求时间使PNB PAD,求出它们的相似比;(3)若运动过程中,存在某时刻使梯形PMBN与梯形PQDA的面积相等,求的取值范围。9