1、授课提纲一、线性规划问题中目标函数常见类型梳理1、基本类型直线的截距型(或截距的相反数)2、直线的斜率型3、平面内两点间的距离型(或距离的平方型)4、点到直线的距离型5、变换问题研究目标函数二、基本不等式1、(1)基本不等式若,则 (2)若,则(当且仅当时取“=”) (2)若,则 (2)若,则(当且仅当时取“=”)(3)若,则 (当且仅当时取“=”)2、利用基本不等式求值技巧授课主要内容:一 基本类型直线的截距型(或截距的相反数)例1.已知实数x、y满足约束条件,则的最小值为( )A5 B-6 C10 D-10 变式练习一: 若x,y满足约束条件 ,则z=3x+y的最大值为 变式练习二:设x,
2、y满足约束条件则z2xy的最大值为_二 直线的斜率型 例2.已知实数x、y满足不等式组,求函数的值域.变式练习一:若x,y满足约束条件,则的最大值为 .变式练习二:11.若实数满足,则的取值范围为( ) 三 平面内两点间的距离型(或距离的平方型)例3. 已知实数x、y满足,则的最值为_.解析:目标函数,点(2,2)到点B的距离为其到可行域内点的最大值,;点(2,2)到直线x+y-1=0的距离为其到可行域内点的最小值,。变式练习一:设实数,满足约束条件 则的取值范围是(A) (B) (C) (D)变式练习二:四 点到直线的距离型例4.已知实数x、y满足的最小值。解析:目标函数,其含义是点(-2,
3、1)与可行域内的点的最小距离的平方减5。由实数x、y所满足的不等式组作可行域如图所示(直线右上方):(-2,1)1Oxy2x+y=1点(-2,1)到可行域内的点的最小距离为其到直线2x+y=1的距离,由点到直线的距离公式可求得,故同步训练:已知实数x、y满足,则目标函数的最大值是_。五 变换问题研究目标函数例5.已知,且的最大值是最小值的3倍,则a等于( )A或3 B C或2 D解析:求解有关线性规划的最大值和最小值问题,准确画图找到可行域是关键.如图所示,点和B点分别取得最小值和最大值. 由,由得B(1,1). . 由题意B变式练习一:如果实数满足条件:,则的最大值是 基本不等式考点一:求最
4、值例1:求下列函数的值域(1)y3x 2 (2)yx技巧一:凑项例1:已知,求函数的最大值。技巧二:凑系数例1. 当时,求的最大值。技巧三: 分离例3. 求的值域。技巧四:换元解析二:本题看似无法运用基本不等式,可先换元,令t=x1,化简原式在分离求最值。当,即t=时,(当t=2即x1时取“”号)。技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数的单调性。例:求函数的值域。解:令,则因,但解得不在区间,故等号不成立,考虑单调性。因为在区间单调递增,所以在其子区间为单调递增函数,故。所以,所求函数的值域为。考点二:条件求最值1.若实数满足,则的最小值是 .2:已知,且,求的
5、最小值。变式: (1)若且,求的最小值技巧七、已知x,y为正实数,且x 21,求x的最大值.分析:因条件和结论分别是二次和一次,故采用公式ab。同时还应化简中y2前面的系数为 , xx x技巧八:已知a,b为正实数,2baba30,求函数y的最小值.法一:a, abb 由a0得,0b1令tb+1,1t16,ab2(t)34t28 ab18 y 当且仅当t4,即b3,a6时,等号成立。法二:由已知得:30aba2b a2b2 30ab2令u则u22u300, 5u3 3,ab18,y变式:1.已知a0,b0,ab(ab)1,求ab的最小值。作业:1、求函数最小值.2、求函数最小值.3、若,则函数最小值为 .4、已知,且,求的最小值.5、已知,且,求的最小值.6、设若的最小值为 ( )A 8 B 4 C 1 D 6