1、九年级下册第二十六章二次函数测试题一、选择题(每小题3分,共30分)1.抛物线的对称轴是( )(A)直线(B)直线(C)直线(D)直线2对于抛物线,下列说法正确的是( )(A)开口向下,顶点坐标(B)开口向上,顶点坐标(C)开口向下,顶点坐标(D)开口向上,顶点坐标3.若A(),B(),C()为二次函数的图象上的三点,则的大小关系是( ) (A)(B) (C)(D)4.二次函数的图象与轴有交点,则的取值范围是( )(A) (B) (C) (D)5抛物线向右平移1个单位,再向下平移2个单位,所得到的抛物线是( ) () () (C) (D)6烟花厂为扬州三月经贸旅游节特别设计制作一种新型礼炮,这
2、种礼炮的升空高度与飞行时间的关系式是,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为()()()()()xy24820 7.如图所示是二次函数的图象在轴上方的一部分,对于这段图象与轴所围成的阴影部分的面积,你认为与其最接近的值是( )(A)4 (B)(C) (D)8.如图,某厂有许多形状为直角梯形的铁皮边角料,为节约资源,现要按图中所示的方法从这些边角料上截取矩形(阴影部分)铁皮备用,当截取的矩形面积最大时,矩形两边长应分别为( )(A)(B) (C)(D)9如图,当0时,函数与函数的图象大致是( )O1xy10.二次函数y=ax2+bx+c(a0)的图像如图所示,下列结论
3、正确的是( )A.ac0 B.当x=1时,y0C.方程ax2+bx+c=0(a0)有两个大于1的实数根D.存在一个大于1的实数x0,使得当xx0时,y随x的增大而减小; 当xx0时,y随x的增大而增大.二、填空题(每小题3分,共18分)10.平移抛物线,使它经过原点,写出平移后抛物线的一个解析式 .11. 抛物线的图象经过原点,则 .xyO12.将化成的形式为 .13.某商店经营一种水产品,成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克;销售价每涨1元,月销售量就减少10千克,针对这种水产品的销售情况,销售单价定为 元时,获得的利润最多.14.已知二次函数
4、的图象如图所示,则点在第 象限15.已知二次函数的部分图象如右图所示,则关于的一元二次方程的解为 16老师给出一个二次函数,甲,乙,丙三位同学各指出这个函数的一个性质: 甲:函数的图像经过第一、二、四象限;乙:当2时,随的增大而减小.丙:函数的图像与坐标轴只有两个交点.已知这三位同学叙述都正确,请构造出满足上述所有性质的一个函数_.三、解答题(第17小题6分,第18、19小题各7分,共20分)17.已知一抛物线与x轴的交点是、B(1,0),且经过点C(2,8)。(1)求该抛物线的解析式;(2)求该抛物线的顶点坐标。18. 已知抛物线的部分图象如图所示.(1)求c的取值范围;(2)若抛物线经过点
5、,试确定抛物线的解析式;19、二次函数的图象如图所示,根据图象解答下列问题:(1)写出方程的两个根;(2)写出随的增大而减小的自变量的取值范围;(3)若方程有两个不相等的实数根,求的取值范围.四、(第小题8分,共16分)20.小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)当x是多少时,矩形场地面积S最大?最大面积是多少?21某商场将进价为30元的书包以40元售出, 平均每月能售出600个,调查表明:这种书包的售价每上涨1元,其销售量就减少10个。(1)请写出每月售出书包
6、的利润y元与每个书包涨价x元间的函数关系式;(2)设每月的利润为10000的利润是否为该月最大利润?如果是,请说明理由;如果不是,请求出最大利润,并指出此时书包的售价应定为多少元。(3)请分析并回答售价在什么范围内商家就可获得利润。五(第22小题8分,第23小题9分,共17分)22.如图,已知二次函数的图像经过点和点(1)求该二次函数的表达式;(2)写出该抛物线的对称轴及顶点坐标;(3)点(,)与点D均在该函数图像上(其中0),且这两点关于抛物线的对称轴对称,求的值及点D到轴的距离ADCBOEy23.如图,隧道的截面由抛物线和矩形构成,矩形的长为,宽为,以所在的直线为轴,线段的中垂线为轴,建立
7、平面直角坐标系,轴是抛物线的对称轴,顶点到坐标原点的距离为(1)求抛物线的解析式;(2)一辆货运卡车高,宽2.4m,它能通过该隧道吗?(3)如果该隧道内设双行道,为了安全起见,在隧道正中间设有0.4m的隔离带,则该辆货运卡车还能通过隧道吗?六(第24小题9分,第25小题10分,共19分)xyDCAOB(第24题)24如图,抛物线与轴相交于、两点(点在点的左侧),与轴相交于点,顶点为.(1)直接写出、三点的坐标和抛物线的对称轴; (2)连接,与抛物线的对称轴交于点,点为线段上的一个动点,过点作交抛物线于点,设点的横坐标为;用含的代数式表示线段的长,并求出当为何值时,四边形为平行四边形?设的面积为,求与的函数关系式.25如图,在平面直角坐标系中,点的坐标分别为点在轴上已知某二次函数的图象经过、三点,且它的对称轴为直线点为直线下方的二次函数图象上的一个动点(点与、不重合),过点作轴的平行线交于点xyBFOACPx=1(第25题)(1)求该二次函数的解析式;(2)若设点的横坐标为用含的代数式表示线段的长(3)求面积的最大值,并求此时点的坐标7