1、新北师大版五年级下册数学知识点总结第一单元:分数加减法分数的意义1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。2、分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。如分数与除法的关系除法中的被除数相当于分数的分子,除数相等于分母。分数的基本质分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。分数的加减混合运算1、分数加减法的计算方法与整数加减法的计算方法相同,在计算过程中要注意统一分数单位。2、分数加减混和运算的运算顺序和整数加减混和运算的运算顺序相同。在计算过程,整数的运算律对分数同样适用。3、同分母分
2、数加、减法:同分母分数相加、减,分母不变,只把分子相加减,计算的结果,能约分的要约成最简分数。4、异分母分数加、减法:异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算;或者先根据需要进行部分通分。根据算式特点来选择方法。第二单元:长方体(一)长方体(一)长方体的认识 1、认识长方体、正方体的基本特点(1)长方体有12条棱,这12条棱中有4条长、4条宽和4条高。正方体的12条棱的长度都相等。(2)、正方体是特殊的长方体。因为正方体可以看成是长、宽、高都相等的长方体。(3)、长方体的棱长总和=(长+宽+高)4或者是长4+宽4+高4长方体的宽=棱长总和4-长-高 长方体的长=棱长总
3、和4-宽-高长方体的高=棱长总和4-宽-长 正方体的棱长总和=棱长12 正方体的棱长=棱长总和12展开与折叠 1、正方体展开共11种141型6个231型3个 222型1个楼梯形 3-3型1个 注意:(1)田字型与凹字型的全错。(2)正方体展开至少和最多都只剪开7条棱。2、长方体的表面积 (1)、表面积的意义:是指六个面的面积之和。(2)、长方体和正方体表面积的计算方法:(3)、长方体的表面积(6个面)=长宽2+长高2+宽高2 (上下面)(前后面) (左右面) S长=(长宽长高宽高)2(4)、正方体的表面积(6个面)=棱长棱长6 S正=棱长棱长6 (一个面的面积)露在外面的面 求露在外面的面的面
4、积=棱长棱长露在外面的面的个数。 (一个面的面积)第三单元分数乘法分数乘法(一) (1)理解分数乘整数的意义:分数乘整数意义同整数乘法意义相同,就是求几个相同加数的和的简便运算。(2)分数乘整数的计算方法:分母不变,分子和整数相乘的积作分子。能约分的要约成最简分数。分数乘法(二) (1)、整数乘分数的意义:求一个数的几分之几是多少。(2)、理解打折的含义。例如:九折,是指现价是原价的十分之九。分数乘法(三) 1、分数乘分数的计算方法:分子乘分子,分母乘分母,能约分的可以先约分。(结果是最简分数。)2、比较分数相乘的积与每一个乘数的大小。乘数乘以1的数,积1的数,积乘数;真分数相乘积小于任何一个
5、乘数;真分数与假分数相乘积大于真分数小于假分数。3、求一个数的几分之几是多少,用乘法。(即已知整体和部分量相对应的分率,求部分量,用乘法)倒数 1、倒数的意义:如果两个数的乘积是1,那么我们称其中一个数是另一个数的倒数。倒数是对两个数来说的,并不是孤立存在的。2、求倒数的方法:把这个数的分子、分母调换位置;其中整数可以看成分母是1的分数。3、1的倒数是1;0没有倒数。0没有倒数,是因为在分数中,0不能做分母。第四单元:长方体(二)4.1体积与容积 1、体积与容积的概念:体积:物体所占空间的大小叫作物体的体积。(从外部测量)容积:容器所能容纳物体的体积叫做物体的容积。(从内部测量)注意:同一个容
6、器,体积大于容积;当容器壁很薄时,容积接近等于体积。如果容器壁忽略不计时,容积等于体积。几个物体拼在一起时,它们的体积不发生改变(它们占空间的大小没有发生变化)4.2体积单位 1、认识体积、容积单位常用的体积单位:立方米(米3)(m3)、立方分米(分米3)(dm3)、立方厘米(厘米3)(cm3)常用的容积单位:升(L)、毫升(mL)、1升=1分米3、1毫升=1厘米34.3长方体的体积 1、长方体、正方体体积的计算方法长方体的体积=长宽高,长用a表示,宽用b表示,高用h表示,体积用V表示,体积可表示为V=abh正方体的体积=棱长棱长棱长,如果棱长用a表示,体积可表示为V=a3=aaa长方体(正方
7、体)的体积=底面积高V=Sh补充知识点:长方体的体积=横截面面积长2、能利用长方体(正方体)的体积及其他两个条件求出问题。如:长方体的高=体积长宽 长=体积高宽 宽=体积高长注意:计算体积时,单位一定要统一;表面积与体积表示的意义不一样,单位不同,无法比较大小4.4体积单位的换算 1、体积、容积单位之间的进率:相邻体积、容积单位间进率为10001米=1000分米 1分米=1000厘米 1升=1分米 1毫升=1厘米1升=1000毫升2、体积、容积单位之间的换算方法:体积、容积单位之间的换算,由高级单位化成低级单位乘进率,由低级单位化成高级单位除以进率4.5有趣的测量 1、不规则物体体积的测量方法
8、:一般都是把不规则物体的体积转化成可通过测量计算的水的体积(注意液面是“升高了”还是“升高到”)注意:在测量体积较小的不规则物体的体积时,要先测量出一定数量物体的体积,再算出一个物体的体积。2、不规则物体体积的计算方法:现在液体体积减去原来液体体积第五单元:分数除法分数除法(一)1、分数除以整数的意义及计算方法。意义:分数除以整数,就是求这个数的几分之几是多少。计算方法:分数除以整数(0除外)等于乘这个数的倒数。分数除法(二)1、一个数除以分数的意义和基本算理:一个数除以分数的意义与整数除法的意义相同;一个数除以分数等于乘这个数的倒数。2、一个数除以分数的计算方法:除以一个数(0除外)等于乘这
9、个数的倒数。3、比较商与被除数的大小。除数小于1,商大于被除数;除数等于1。商等于被除数;除数大于1,商小于被除数。分数除法(三)1、列方程“求一个数的几分之几是多少”的方法:(1)、解方程法:设未知数,这里的单位“1”未知,所以设单位“1”为x,再根据分数乘法的意义列出等量关系式解这个方程。(2)、算术方法:用部分量除以它所占整体的几分之几(对应量对应分率=标准量)2、判断单位“1”的方法和写等量关系式的方法:第七单元:用方程解决问题1、小数乘整数的意义求几个相同加数的和的简便运算。如:3表示的3倍是多少或3个的和的简便运算。2、在乘法里:一个因数扩大几倍,另一个因数缩小相同的倍数,积不变。
10、(这叫做积不变性质)3、在除法里:被除数和除数同时扩大(或缩小)相同的倍数,商的大小不变。(这叫做商不变性质)4、在含有字母的式子里,字母中间的乘号可以简记“ ”,也可以省略不写。(注意:加号、减号、除号以及数与数之间的乘号不能省略。字母与数字相乘简写时,数字写在字母前面。)5、aaa可以写作aaa或a3,a3读作a的立方或a的三次方。3a表示aaa6、方程:含有未知数的等式称为方程。(所有的方程都是等式,但等式不一定都是方程。)使方程左右两边相等的未知数的值,叫做方程的解。求方程的解的过程叫做解方程。(方程的解是一个数;解方程是一个计算过程。)7、解方程原理:天平平衡。等式左右两边同时加、减
11、、乘、除相同的数(0除外),等式依然成立。8、解方程的方法:方法一:利用天平平衡原理(即等式的性质)解方程;方法二:利用加、减、乘、除运算数量关系解方程。9、加、减、乘、除运算数量关系式:加法:加数+加数=和一个加数=和两一个加数减法:被减数减数=差被减数=差+减数减数=被减数差乘法:因数因数=积一个因数=积另一个因数除法:被除数除数=商被除数=商除数除数=被除数商10、常用数量关系式:路程速度时间速度路程时间时间路程速度总价单价数量单价总价数量 数量总价单价总产量单产量数量 单产量总产量数量 数量总产量单产量工作总量=工作效率工作时间 工作效率=工作总量工作时间工作时间=工作总量工作效率11
12、、相遇问题:特点:必须是同时的可根据不同的行程进行分析。路程= 速度和 相遇时间 速度和=路程相遇时间 相遇时间=路程速度和 (速度1速度2) 速度1=路程相遇时间速度212、列方程解应用题的一般步骤:(1)、弄清题意,找出未知数,并用x表示。(解设)(2)、找出应用题中数量之间的相等关系,列方程。(找关系)(3)、解方程。(列)(4)、检验,写出答案。(验)第八单元:数据的表示和分析1、 条形统计图(单式条形统计图和复式条形统计图)特点:用直条的长短表示数量的多少。优点:能清楚地看出各种数量的多少。2、 折线统计图(单式折线统计图和复式折线统计图)特点:用折线的高低起伏表示数量的多少。优点:
13、不但可以表示数量的多少,而且能够清楚地表示出数量增减变化的情况。3、 平均数的认识:一组数据的总和除以这组数据的个数所得的商,叫做这组数据的平均数。4、 采用去掉一个最高分和一个最低分求平均数的理由:平均数的反应很灵敏,任何一个数过大或过小都会影响到平均数的大小,受极端数据影响较大,所以去掉最高分和最低分求出的平均数更有代表性。知识链接1、 加法 加法交换律:ab=ba 加法结合律:abc=(ab)c=a(bc)2、 减法 减法的性质:一个数连续减去两个数等于这个数减去这两个数的和。如:a(bc)=abc a(bc)=abc3、 乘法 乘法交换律:ab=ba 乘法结合律:abc=(ab)c=a(bc) 乘法分配律:a(bc)=abac 或 (ab)c=acbc4、 除法 除法的性质:一个数连续除以两个数等于这个数除以这两个数的积。如:abc=a(bc) a(bc)=abc (ab)c=acbc