有关对勾函数、分数函数性质的研究.doc

上传人:sk****8 文档编号:4360295 上传时间:2019-10-26 格式:DOC 页数:4 大小:740.50KB
下载 相关 举报
有关对勾函数、分数函数性质的研究.doc_第1页
第1页 / 共4页
有关对勾函数、分数函数性质的研究.doc_第2页
第2页 / 共4页
有关对勾函数、分数函数性质的研究.doc_第3页
第3页 / 共4页
有关对勾函数、分数函数性质的研究.doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、有关两个特殊函数性质的研究报告报告内容:对和性质进行分析,包括定义域、图像、至于、奇偶性、单调性、单调区间、最大值和最小值等特征,写出研究报告。图1一、 关于函数性质的讨论1. 当时【特例】当时,函数化为。定义域为。奇偶性: 函数为奇函数。之后只需讨论时情况。时,单调性: ,令,解得,当 时,为减函数;当 时,为增函数。渐近线:当时,;当时,。作出函数图象,如图1。值域:当时,有最小值,值域为。图2【推广】 。定义域为。奇偶性: ,函数为奇函数。时,单调性:,令,解得,当 时,为减函数;当 时,为增函数。渐近线:当时,;当时,。图象略。值域:当时,即为最小值,值域为。2. 当时第1页 共3页此

2、情况与情况1基本相同,作出函数图象,如图2。设函数为(此时)定义域为。奇偶性: ,函数为奇函数。时,单调性:,同情况1理,得为增函数,为减函数。渐近线:当时,;当时,。图象略。值域:当时,即为最大值,值域为。图33. 当时【特例】当时,函数化为。定义域为。奇偶性:函数为奇函数。时,单调性:,得 ,为增函数。渐近线:当时,;当时,。作出函数图象,如图3。值域为 。【推广】 改函数为(此时)。定义域为。奇偶性:函数为奇函数。时,单调性:,得 ,为增函数。渐近线:当时,;当时,。图像略。值域为 。图44. 当时此情况与情况3基本相同,作出函数图象,如图4。改函数为(此时)。定义域。奇偶性:函数为奇函

3、数。单调性:,得 ,为增函数。渐近线:当时,;当时,。图像略。值域为 。5. 总结函数定义域奇偶性| 单调性渐近线值域奇增:减:奇增: 减:第2页 共3页奇增:和奇增:和二、 关于函数性质的讨论1. 与关系图5【特例】当时,函数化为,变形:,定义域为,值域为。作出函数图象,如图5。观察发现当时,在图5中作出函数后可由沿轴向右侧平移个单位,沿轴向上平移个单位而得到。【推广】变形:,定义域为,值域为。可以看做是把中,值改为,即,再将其沿轴向右侧平移个单位,沿轴向上平移个单位而得到的。2. 函数中产生这一条件的原因由1中【推广】得到的函数的变形中不难发现,当时,函数可化为,即不再有讨论意义,所以要加上这一条件。2010年10月15日星期五第3页 共3页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 重点行业资料库 > 自然科学

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。