高考物理经典例题讲解.doc

上传人:sk****8 文档编号:4362567 上传时间:2019-10-26 格式:DOC 页数:41 大小:6.10MB
下载 相关 举报
高考物理经典例题讲解.doc_第1页
第1页 / 共41页
高考物理经典例题讲解.doc_第2页
第2页 / 共41页
高考物理经典例题讲解.doc_第3页
第3页 / 共41页
高考物理经典例题讲解.doc_第4页
第4页 / 共41页
高考物理经典例题讲解.doc_第5页
第5页 / 共41页
点击查看更多>>
资源描述

1、高考物理经典题型及其解题基本思路 力与运动 思想方法提炼一、对力的几点认识 1.关于力的概念.力是物体对物体的相互作用.这一定义体现了力的物质性和相互性.力是矢量. 2.力的效果 (1)力的静力学效应:力能使物体发生形变.(2)力的动力学效应: a.瞬时效应:使物体产生加速度F=ma b.时间积累效应:产生冲量I=Ft,使物体的动量发生变化Ft=p c.空间积累效应:做功W=Fs,使物体的动能发生变化Ek=W3.物体受力分析的基本方法 (1)确定研究对象(隔离体、整体). (2)按照次序画受力图,先主动力、后被动力,先场力、后接触力. (3)只分析性质力,不分析效果力,合力与分力不能同时分析.

2、 (4)结合物体的运动状态:是静止还是运动,是直线运动还是曲线运动.如物体做曲线运动时,在某点所受合外力的方向一定指向轨迹弧线内侧的某个方向.二、中学物理中常见的几种力三、力和运动的关系 1.F=0时,加速度a =0.静止或匀速直线运动 F=恒量:F与v在一条直线上匀变速直线运动 F与v不在一条直线上曲线运动(如平抛运动) 2.特殊力:F大小恒定,方向与v始终垂直匀速圆周运动 F=-kx简谐振动四、基本理论与应用 解题常用的理论主要有:力的合成与分解、牛顿运动定律、匀变速直线运动规律、平抛运动的规律、圆周运动的规律等.力与运动的关系研究的是宏观低速下物体的运动,如各种交通运输工具、天体的运行、

3、带电物体在电磁场中的运动等都属于其研究范畴,是中学物理的重要内容,是高考的重点和热点,在高考试题中所占的比重非常大.选择题、填空题、计算题等各种类型的试题都有,且常与电场、磁场、动量守恒、功能部分等知识相结合.感悟 渗透 应用一、力与运动的关系 力与运动关系的习题通常分为两大类:一类是已知物体的受力情况,求解其运动情况;另一类是已知物体的运动情况,求解物体所受的未知力或与力有关的未知量.在这两类问题中,加速度a都起着桥梁的作用.而对物体进行正确的受力分析和运动状态及运动过程分析是解决这类问题的突破口和关键.【例1】如图所示,质量M=10kg的木楔静止于粗糙水平地面上,木楔与地面间的动摩擦因数m

4、=0.2,在木楔的倾角为q=30的斜面上,有一质量m=1.0kg的物块由静止开始沿斜面下滑,当滑行路程s=1.4m时,其速度v=1.4m/s.在这个过程中木楔处于静止状态.求地面对木楔的摩擦力的大小和方向(取g=10m/s2).【解析】由于木楔没有动,不能用公式f=mN计算木楔受到的摩擦力,题中所给出动摩擦因数的已知条件是多余的。首先要判断物块沿斜面向下做匀加速直线运动,由运动学公式v2t-v20=2as可得其加速度a=v2/2s=0.7m/s2,由于a gsinq=5m/s2,可知物块受摩擦力作用,物块和木楔的受力如图所示:对物块,由牛顿第二定律得: mgsinq-f1=ma f1=4.3N

5、 mgcosq-N1=0 N1= N对木楔,设地面对木楔的摩擦力如图所示,由平衡条件: f=N1sinq-f1cosq=0.61Nf的结果为正值,说明所设的方向与图设方向相同.【解题回顾】物理习题的解答,重在对物理规律的理解和运用,忌生拉硬套公式.对两个或两个以上的物体,理解物体间相互作用的规律,正确选取并转移研究对象,是解题的基本能力要求.本题也可以用整体法求解:对物块沿斜向下的加速度分解为水平方向acosq和竖直方向asinq,其水平方向上的加速度是木楔对木块作用力的水平分量产生的,根据力的相互作用规律,物块对木楔的水平方向的作用力也是macosq,再根据木楔静止的现象,由平衡条件,得地面

6、对木楔的摩擦力一定是macosq=0.61N.【例2】如图所示,一高度为h0.2m的水平面在A点处与一倾角为30的斜面连接,一小球以v05m/s的速度在平面上向右运动。求小球从A点运动到地面所需的时间(平面与斜面均光滑,取g10m/s2)。某同学对此题的解法为:小球沿斜面运动,则由此可求得落地的时间t。问:你同意上述解法吗?若同意,求出所需的时间;若不同意,则说明理由并求出你认为正确的结果。【解析】不同意。小球应在A点离开平面做平抛运动,而不是沿斜面下滑。正确做法为:落地点与A点的水平距离 斜面底宽 小球离开A点后不会落到斜面,因此落地时间即为平抛运动时间。 二、临界状态的求解 临界状态的问题

7、经常和最大值、最小值联系在一起,它需要在给定的物理情境中求解某些物理量的上限或下限,有时它与数学上的极值问题相类似.但有些问题只能从物理概念、规律的约束来求解,研究处理这类问题的关键是:(1)要能分析出临界状态的由来.(2)要能抓住处于临界状态时物体的受力、运动状态的特征.【例3】如图所示,在相互垂直的匀强电场、磁场中,有一个倾角为q且足够长的光滑绝缘斜面.磁感应强度为B,方向水平向外,电场强度的方向竖直向上.有一质量为m,带电量为+q的小球静止在斜面顶端,这时小球对斜面的压力恰好为0.若迅速把电场方向改为竖直向下时,小球能在斜面上连续滑行多远?所用时间是多少?【解析】开始电场方向向上时小球受

8、重力和电场力两个力作用,mg=qE,得电场强度E=mg/q. 当电场方向向下,小球在斜面上运动时小球受力如图,在离开斜面之前小球垂直于斜面方向的加速度为0.mgcosq+qEcosq=Bqv+N,即2mgcosq=Bqv+N 随v的变大小球对斜面的压力N在变小,当增大到某个值时压力为0,超过这个值后,小球将离开斜面做曲线运动. 沿斜面方向小球受到的合力F=mgsinq+qEsinq=2mgsinq为恒力,所以小球在离开斜面前做匀加速直线运动a=F/m=2gsinq.其临界条件是2mgcosq=Bqv,得即将离开斜面时的速度v=2mgcosq/Bq. 由运动学公式v2=2as,得到在斜面上滑行的

9、距离为s=m2gcos2q/(B2q2sinq) 再根据v=at得运动时间:t=v/a=mctanq/Bq.【解题回顾】本题的关键有三点:(1)正确理解各种力的特点,如匀强电场中电场力是恒力,洛伦兹力随速度而变化,弹力是被动力等.(2)分析出小球离开斜面时临界状态,求出临界点的速度.(3)掌握运动和力的关系,判断出小球在离开斜面前做初速度为0的匀加速直线运动.下滑距离的求解也可以用动能定理求解,以加强对各种力的理解.【例4】如图所示,一平直的传送带以v=2m/s的速度匀速运行,传送带把A处的工件运送到B处.A、B相距L=10m.从A处把工件无初速度地放到传送带上,经过时间t=6s传送到B处,欲

10、用最短的时间把工件从A处传送到B处,求传送带的运行速度至少多大?【解析】A物体无初速度放上传送带以后,物体将在摩擦力作用下做匀加速运动,因为L/tv/2,这表明物体从A到B先做匀加速运动后做匀速运动.设物体做匀加速运动的加速度为a,加速的时间为t1,相对地面通过的位移为s,则有v=at1,s=at21/2,s+v(t-t1)=L. 数值代入得a=1m/s2 要使工件从A到B的时间最短,须使物体始终做匀加速运动,至B点时速度为运送时间最短所对应的皮带运行的最小速度. 由v2=2aL,v=【解题回顾】对力与运动关系的习题,正确判断物体的运动过程至关重要.工件在皮带上的运动可能是一直做匀加速运动、也

11、可能是先匀加速运动后做匀速运动,关键是要判断这一临界点是否会出现.在求皮带运行速度的最小值时,也可以用数学方法求解:设皮带的速度为v,物体加速的时间为t1,匀速的时间为t2,则L=(v/2)t1+vt2,而t1=v/a.t2=t-t1,得t=L/v+v/2a.由于L/v与v/2a的积为常数,当两者相等时其积为最大值,得v= 时t有最小值.由此看出,求物理极值,可以用数学方法也可以采用物理方法.但一般而言,用物理方法比较简明.三、在生产、生活中的运用. 高考制度的改革,不仅是考试形式的变化,更是高考内容的全面革新,其根本的核心是不仅要让学生掌握知识本身,更要让学生知道这些知识能解决哪些实际问题,

12、因而新的高考试题十分强调对知识的实际应用的考查.【例5】两个人要将质量M=1000kg的小车沿一小型铁轨推上长L=5m,高h=1m的斜坡顶端,如图所示.已知车在任何情况下所受的摩擦阻力恒为车重的0.12倍,两人能发挥的最大推力各为800N.在不允许使用别的工具的情况下,两人能否将车刚好推到坡顶?如果能,应如何办?(g取10m/s2 )【解析】由于推车沿斜坡向上运动时,车所受“阻力”大于两个人的推力之和. 即f1=Mgh/L+mMg=3.2103NF=1600N 所以不能从静止开始直接沿斜面将小车推到坡顶. 但因小车在水平面所受阻力小于两人的推力之和,即f2=mMg=1200N1600N故可先在

13、水平面上加速推一段距离后再上斜坡.小车在水平面的加速度为 a1=(F-f2)/M=0.4m/s2 在斜坡上做匀减速运动,加速度为 a2=(F-f1)/M=-1.6m/s2 设小车在水平面上运行的位移为s到达斜面底端的速度为v. 由运动学公式2a1s=v2=-2a2L 解得s=20m.即两人先在水平面上推20m后,再推上斜坡,则刚好能把小车推到坡顶.【解题回顾】本题的设问,只有经过深入思考,通过对物理情境的变换才能得以解决.由此可知,对联系实际问题应根据生活经验进行具体分析.不能机械地套用某种类型.这样才能切实有效地提高解题能力.另外,本题属半开放型试题,即没有提供具体的方法,需要同学自己想出办

14、法,如果题中没有沿铁轨这一条件限制,还可以提出其他一些办法,如在斜面上沿斜线推等.【例6】蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目。一个质量为 60kg 的运动员,从离水平网面 3.2m 高处自由下落,着网后沿竖直方向蹦回到离水平网面 5.0m 高处。已知运动员与网接触的时间为 1.2s。若把在这段时间内网对运动员的作用力当作恒力处理,求此力的大小。(g10m/s2)【解析】将运动员看作质量为 m 的质点,从 h1 高处下落,刚接触网时速度的大小 (向下)弹跳后到达的高度为 h2,刚离网时速度的大小 (向上)速度的改变量 (向上)以 a 表示加速度,t 表示接触时间

15、,则接触过程中运动员受到向上的弹力 F 和向下的重力 mg。由牛顿第二定律,由以上五式解得,代入数值得 N四、曲线运动. 当物体受到的合力的方向与速度的方向不在一条直线上时,物体就要做曲线运动.中学物理能解决的曲线运动的习题主要有两种情形:一种是平抛运动,一种是圆周运动.平抛运动的问题重点是掌握力及运动的合成与分解.圆周运动的问题重点是向心力的来源和运动的规律.【例7】在光滑水平面上有一质量m=1.010-3kg,电量q=1.010-10C的带正电小球,静止在O点,以O点为原点,在该水平面内建立直角坐标系Oxy,如图所示. 现突然加一沿x轴正方向、场强大小为E=2.0106V/m的匀强电场,使

16、小球开始运动,经过1.0s,所加电场突然变为沿y轴正方向,场强大小仍为E=2.0106V/m的匀强电场,再经过1.0s所加电场又突然变为另一个匀强电场.使小球在此电场作用下经1.0s速度变为0.求速度为0时小球的位置.【解析】由牛顿定律可知小球在水平面上的加速度 a=qE/m=0.20m/s2. 当场强沿x轴正方向时,经1.0s小球的速度大小为vx=at=0.201.0=0.20m/s(方向沿x轴方向) 小球沿x轴方向移动的距离为x1=at2/2=0.10m. 在第2s内,电场方向y轴正方向,x方向不再受力, 所以第2s内小球在x方向做匀速运动,在y方向做初速度为0的匀加速直线运动(类似平抛运

17、动)沿y方向的距离:y=at2/2=0.10m. 沿x方向的距离:x2=vxt=0.21.0=0.20m. 第2s未在y方向分速度为: vy=at=0.201.0=0.20m/s 由上可知,此时小球运动方向与x轴成45角,要使小球速度变为0,则在第3s内所加电场方向必须与此方向相反,即指向第三象限,与x轴成225角.在第3s内,设在电场作用下小球加速度的x分量和y方向分量分别为ax、ay,则 ax=vx/t=0.2m/s2, ay=vy/t=0.20m/s2; 在第3s未,小球到达的位置坐标为 x3=x1+x2+vxt-axt2/2=0.40m, y3=y+vyt-ayt2/2=0.20m.【

18、解题回顾】学好物理要有一定的空间想像力,要分析、想像物体的运动状态和运动轨迹.作图可以化抽象为具体,提高解题成功率.本题小球的运动情景如图.【例8】如图所示,有一质量为m的小球P与穿过光滑水平板上小孔O的轻绳相连,用手拉着绳子另一端,使小球在水平板上绕O点做半径为a、角速度为w的匀速圆周运动.求:(1)此时绳上的拉力有多大? (2)若将绳子从此状态迅速放松,后又拉直,使小球绕O做半径为b的匀速圆周运动.从放松到拉直这段过程经历了多长时间? (3)小球做半径为b的匀速圆周运动时,绳子上的拉力又是多大?【解析】(1)绳子上的拉力提供小球做匀速圆周运动的向心力,故有:F=mw2a(2)松手后绳子上的

19、拉力消失,小球将从松手时的位置沿圆周的切线方向,在光滑的水平面上做匀速直线运动.当绳在水平板上长为b时,绳又被拉紧.在这段匀速直线运动的过程中小球运动的距离为s= ,如图所示故t=s/v=(3)将刚拉紧绳时的速度分解为沿绳子的分量和垂直于绳子的分量.在绳被拉紧的短暂过程中,球损失了沿绳的分速度,保留着垂直于绳的分速度做匀速圆周运动.被保留的速度的大小为: v1=va/b=wa2/b. 所以绳子后来的拉力为: F=mv21/b=mw2a4/b3.【解题回顾】此题难在第3问,注意物体运动过程中的突变点,理解公式F=mv2/R中的v是垂直于半径、沿切线方向的速度.五、图像的运用【例9】如图所示,一对

20、平行光滑轨道设置在水平面上,两轨道间距L=0.20m,电阻R=1.0W;有一导体杆静止地放在轨道上,与两轨道垂直,杆及轨道的电阻皆可忽略不计,整个装置处于磁感应强度B=0.5T的匀强磁场中,磁场方向垂直轨道向下,现用一外力F沿轨道方向拉杆,使之做匀加速运动,测得力F与时间t的关系如图所示.求杆的质量m和加速度a【解析】物体做匀加速运动的条件是合外力不变.导体杆运动过程中受拉力和安培力两个力作用,因安培力随着速度增加电流变大而变大,所以拉力随着时间而变化.设杆的质量为m,加速度为a,则由运动学公式v=at,感应电动势E=BLv,感应电流I=E/R,安培力f=BIL, 由牛顿第二定律F-f=ma,

21、 整理得F=ma+B2L2at/R, 在图线上取两点代入后可得a = 10m/s2 m = 0.1kg.练习题 如图所示,离子源从某小孔发射出带电量q=1.610-10C的正离子(初速度不计),在加速电压U= 1000V作用下沿O1O2方向进入匀强磁场中磁场限制在以O2为圆心半径为R0=2.64cm的区域内,磁感强度大小B为0.10T,方向垂直纸面向外,正离子沿偏离O1O2为60角的方向从磁场中射出,打在屏上的P点,计算:(1)正离子质量m(2)正离子通过磁场所需要的时间t解 由图可见RR0cot30由、式得1.6710-27(kg)(2)由图所示,离子飞出磁场,偏转60角,故在磁场中飞200

22、9年高考物理经典题型及其解题基本思路专题辅导(三)专题三 动量与能量思想方法提炼牛顿运动定律与动量观点和能量观点通常称作解决问题的三把金钥匙.其实它们是从三个不同的角度来研究力与运动的关系.解决力学问题时,选用不同的方法,处理问题的难易、繁简程度可能有很大差别,但在很多情况下,要三把钥匙结合起来使用,就能快速有效地解决问题.一、能量1.概述 能量是状态量,不同的状态有不同的数值的能量,能量的变化是通过做功或热传递两种方式来实现的,力学中功是能量转化的量度,热学中功和热量是内能变化的量度.高中物理在力学、热学、电磁学、光学和原子物理等各分支学科中涉及到许多形式的能,如动能、势能、电能、内能、核能

23、,这些形式的能可以相互转化,并且遵循能量转化和守恒定律,能量是贯穿于中学物理教材的一条主线,是分析和解决物理问题的主要依据。在每年的高考物理试卷中都会出现考查能量的问题。并时常发现“压轴题”就是能量试题。2.能的转化和守恒定律在各分支学科中表达式 (1)W合=Ek包括重力、弹簧弹力、电场力等各种力在内的所有外力对物体做的总功,等于物体动能的变化。(动能定理) (2)WF=E除重力以外有其它外力对物体做功等于物体机械能的变化。(功能原理) 注:(1)物体的内能(所有分子热运动动能和分子势能的总和)、电势能不属于机械能(2)WF=0时,机械能守恒,通过重力做功实现动能和重力势能的相互转化。(3)W

24、G=-EP重力做正功,重力势能减小;重力做负功,重力势能增加。重力势能变化只与重力做功有关,与其他做功情况无关。 (4)W电=-EP 电场力做正功,电势能减小;电场力做负功,电势能增加。在只有重力、电场力做功的系统内,系统的动能、重力势能、电势能间发生相互转化,但总和保持不变。 注:在电磁感应现象中,克服安培力做功等于回路中产生的电能,电能再通过电路转化为其他形式的能。(5)W+Q=E物体内能的变化等于物体与外界之间功和热传递的和(热力学第一定律)。 (6)mv02/2=h-W 光电子的最大初动能等于入射光子的能量和该金属的逸出功之差。 (7)E=mc2在核反应中,发生质量亏损,即有能量释放出

25、来。(可以以粒子的动能、光子等形式向外释放)动量与能量的关系 1.动量与动能 动量和能量都与物体的某一运动状态相对应,都与物体的质量和速度有关.但它们存在明显的不同:动量的大小与速度成正比p=mv;动能的大小与速度的平方成正比Ek=mv2/2两者的关系:p2=2mEk 动量是矢量而动能是标量.物体的动量发生变化时,动能不一定变化;但物体的动能一旦发生变化,则动量必发生变化.2.动量定理与动能定理 动量定理:物体动量的变化量等于物体所受合外力的冲量.p=I,冲量I=Ft是力对时间的积累效应 动能定理:物体动能的变化量等于外力对物体所做的功.Ek=W,功W=Fs是力对空间的积累效应.3.动量守恒定

26、律与机械能守恒定律 动量守恒定律与机械能守恒定律所研究的对象都是相互作用的物体系统,(在研究某个物体与地球组成的系统的机械能守恒时,通常不考虑地球的影响),且研究的都是某一物理过程.动量守恒定律的内容是:一个系统不受外力或者所受外力之和为0,这个系统的总动量保持不变;机械能守恒定律的内容是:在只有重力和弹簧弹力做功的情形下,系统机械能的总量保持不变运用动量守恒定律值得注意的两点是:(1)严格符合动量守恒条件的系统是难以找到的.如:在空中爆炸或碰撞的物体受重力作用,在地面上碰撞的物体受摩擦力作用,但由于系统间相互作用的内力远大于外界对系统的作用,所以在作用前后的瞬间系统的动量可认为基本上是守恒的

27、.(2)即使系统所受的外力不为0,但沿某个方向的合外力为0,则系统沿该方向的动量是守恒的. 动量守恒定律的适应范围广,不但适应常见物体的碰撞、爆炸等现象,也适应天体碰撞、原子的裂变,动量守恒与机械能守恒相结合的综合的试题在高考中多次出现,是高考的热点内容.【例1】如图所示,滑块A、B的质量分别为m1与m2,m1m2,由轻质弹簧相连接置于水平的气垫导轨上,用一轻绳把两滑块拉至最近,使弹簧处于最大压缩状态后绑紧。两滑块一起以恒定的速率v0向右滑动.突然轻绳断开.当弹簧伸至本身的自然长度时,滑块A的速度正好为0.求:(1)绳断开到第一次恢复自然长度的过程中弹簧释放的弹性势能Ep;(2)在以后的运动过

28、程中,滑块B是否会有速度为0的时刻?试通过定量分析证明你的结论.【解析】(1)当弹簧处压缩状态时,系统的机械能等于两滑块的动能和弹簧的弹性势能之和,当弹簧伸长到自然长度时,弹性势能为0,因这时滑块A的速度为0,故系统的机械能等于滑块B的动能.设这时滑块B的速度为v,则有E=m2v2/2. 因系统所受外力为0,由动量守恒定律 (m1+m2)v0=m2v. 解得E=(m1+m2)2v02/(2m2).由于只有弹簧的弹力做功,系统的机械能守恒 (m1+m2)v02/2+Ep=E. 解得Ep=(m1-m2)(m1+m2)v02/2m2. (2)假设在以后的运动中滑块B可以出现速度为0的时刻,并设此时A

29、的速度为v1,弹簧的弹性势能为Ep,由机械能守恒定律得 m1v12/2+Ep=(m1+m2)2v02/2m2.根据动量守恒得(m1+m2)v0=m1v1,求出v1代入上式得: (m1+m2)2v02/2m1+Ep=(m1+m2)2v02/2m2.因为Ep0,故得: (m1+m2)2v02/2m1(m1+m2)2v02/2m2即m1m2,这与已知条件中m1m2不符.可见在以后的运动中不可能出现滑块B的速度为0的情况.【解题回顾】“假设法”解题的特点是:先对某个结论提出可能的假设.再利用已知的规律知识对该假设进行剖析,其结论若符合题意的要求,则原假设成立.“假设法”是科学探索常用的方法之一.在当前

30、,高考突出能力考察的形势下,加强证明题的训练很有必要.【例2】如图所示,质量为m的有孔物体A套在光滑的水平杆上,在A下面用细绳挂一质量为M的物体B,若A固定不动,给B一水平冲量I,B恰能上升到使绳水平的位置.当A不固定时,要使B物体上升到使绳水平的位置,则给它的水平冲量至少多大?【解析】当A固定不动时,B受到冲量后以A为圆心做圆周运动,只有重力做功,机械能守恒.在水平位置时B的重力势能应等于其在最低位置时获得的动能Mgh=Ek=p2/2M=I2/2M.若A不固定,B向上摆动时A也要向右运动,当B恰能摆到水平位置时,它们具有相同的水平速度,把A、B看成一个系统,此系统除重力外,其他力不做功,机械

31、能守恒.又在水平方向上系统不受外力作用,所以系统在水平方向上动量守恒,设M在最低点得到的速度为v0,到水平位置时的速度为v. Mv0=(M+m)v. Mv02/2=(M+m)v2/2+Mgh. I=Mv0. I=【解题回顾】此题重要的是在理解A不固定,B恰能上升到使绳水平的位置时,其竖直方向的分速度为0,只有水平速度这个临界点.另外B上升时也不再是做圆周运动,此时绳的拉力对B做功(请同学们思考一下,绳的拉力对B做正功还是负功),有兴趣的同学还可以分析一下系统以后的运动情况.【例3】下面是一个物理演示实验,它显示:图中下落的物体A、B经反弹后,B能上升到比初始位置高的地方.A是某种材料做成的实心

32、球,质量m1=0.28kg,在其顶部的凹坑中插着质量m2=0.1kg的木棍B.B只是松松地插在凹坑中,其下端与坑底之间有小间隙. 将此装置从A的下端离地板的高度H=1.25m处由静止释放.实验中,A触地后在极短的时间内反弹,且其速度大小不变;接着木棍B脱离球A开始上升,而球A恰好停留在地板上,求木棍B上升的高度.重力加速度(g=10m/s2)【解析】根据题意,A碰地板后,反弹速度的大小等于它下落到地面时的速度的大小,由机械能守恒得 (m1+m2)gH=(m1+m2)v2/2,v1= .A刚反弹时速度向上,立刻与下落的B碰撞,碰前B的速度v2= . 由题意,碰后A速度为0,以v2表示B上升的速度

33、,根据动量守恒m1v1-m2v2=m2v2. 令h表示B上升的高度,有m2v22/2=m2gh, 由以上各式并代入数据得:h=4.05m.【例4】质量分别为m1、m2的小球在一直线上做弹性碰撞,它们在碰撞前后的位移时间图像如图所示,若m1=1kg,m2的质量等于多少?【解析】从位移时间图像上可看出:m1和m2于t=2s时在位移等于8m处碰撞,碰前m2的速度为0,m1的速度v0=s/t=4m/s 碰撞后,m1的速度v1=-2m/s, m2的速度v2=2m/s,由动量守恒定律得m1v0=m1v1+m2v2, m2=3kg.【解题回顾】这是一道有关图像应用的题型,关键是理解每段图线所对应的两个物理量

34、:位移随时间的变化规律,求出各物体碰撞前后的速度.不要把运动图像同运动轨迹混为一谈.【例5】云室处在磁感应强度为B的匀强磁场中,一质量为M的静止的原子核在云室中发生一次衰变,粒子的质量为m,电量为q,其运动轨迹在与磁场垂直的平面内.现测得粒子运动的轨道半径为R,试求在衰变过程中的质量亏损.(注:涉及动量问题时,亏损的质量可忽略不计)【解析】粒子在磁场中做圆周运动的向心力是洛伦兹力,设粒子的运动速度为v,由牛顿第二定律得qvB=mv2/R. 衰变过程中,粒子与剩余核发生相互作用,设衰变后剩余核的速度为v,衰变过程中动量守恒(M-m)v=mv. 粒子与剩余核的动能来源于衰变过程中亏损的质量,有 m

35、c2=(M-m)v2/2+mv2/2.解得:m=M(qBR)2/2c2m(M-m).【解题回顾】此题知识跨度大,综合性强,将基础理论与现代物理相结合.考查了圆周运动、洛伦兹力、动量守恒、核裂变、能量守恒等知识.这类题型需注意加强.【例6】如图所示,一轻绳穿过光滑的定滑轮,两端各拴有一小物块.它们的质量分别为m1、m2,已知m2=3m1,起始时m1放在地上,m2离地面的高度h=1.0m,绳子处于拉直状态,然后放手.设物块与地面相碰时完全没有弹起(地面为水平沙地),绳不可伸长,绳中各处拉力均相同,在突然提起物块时绳的速度与物块的速度相同,试求m2所走的全部路程(取3位有效数字)【解析】因m2m1,

36、放手后m2将下降,直至落地. 由机械能守恒定律得 m2gh-m1gh=(m1+m2)v2/2. m2与地面碰后静止,绳松弛,m1以速度v上升至最高点处再下降. 当降至h时绳被绷紧. 根据动量守恒定律可得:m1v=(m1+m2)v1由于m1通过绳子与m2作用及m2与地面碰撞的过程中都损失了能量,故m2不可能再升到h处,m1也不可能落回地面.设m2再次达到的高度为h1,m1则从开始绷紧时的高度h处下降了h1.由机械能守恒 (m1+m2)v12/2+m1gh1=m2gh1 由以上3式联立可解得 h1=m12h/(m1+m2)2=m1/(m1+m2)2h此后m2又从h1高处落下,类似前面的过程.设m2

37、第二次达到的最高点为h2,仿照上一过程可推得 h2=m12h1/(m1+m2)2=m14h/(m1+m2)4=m1/(m1+m2)4h由此类推,得:h3=m16h/(m1+m2)6=m1/(m1+m2)6h 所以通过的总路程 s=h+2h1+2h2+2h3+ 【解题回顾】这是一道难度较大的习题.除了在数学处理方面遇到困难外,主要的原因还是出在对两个物块运动的情况没有分析清楚.本题作为动量守恒与机械能守恒定律应用的一种特例,应加强记忆和理解.【例7】如图所示,金属杆a从离地h高处由静止开始沿光滑平行的弧形轨道下滑,轨道的水平部分有竖直向上的匀强磁场B,水平轨道上原来放有一金属杆b,已知a杆的质量

38、为ma,且与杆b的质量之比为mamb=34,水平轨道足够长,不计摩擦,求:(1)a和b的最终速度分别是多大?(2)整个过程中回路释放的电能是多少?(3)若已知a、b杆的电阻之比RaRb=34,其余部分的电阻不计,整个过程中杆a、b上产生的热量分别是多少?【解析】(1)a下滑过程中机械能守恒 magh=mav02/2 a进入磁场后,回路中产生感应电流,a、b都受安培力作用,a做减速运动,b做加速运动,经过一段时间,a、b速度达到相同,之后回路的磁通量不发生变化,感应电流为0,安培力为0,二者匀速运动.匀速运动的速度即为a.b的最终速度,设为v.由于所组成的系统所受合外力为0,故系统的动量守恒 m

39、av0=(ma+mb)v由以上两式解得最终速度 va=vb=v= (2)由能量守恒得知,回路中产生的电能应等于a、b系统机械能的损失,所以 E=magh-(ma+mb)v2/2=4magh/7(3)由能的守恒与转化定律,回路中产生的热量应等于回路中释放的电能等于系统损失的机械能,即Qa+Qb=E.在回路中产生电能的过程中,电流不恒定,但由于Ra与Rb串联,通过的电流总是相等的,所以应有 所以【例8】连同装备质量M=100kg的宇航员离飞船45m处与飞船相对静止,他带有一个装有m=0.5kg的氧气贮筒,其喷嘴可以使氧气以v=50m/s的速度在极短的时间内相对宇航员自身喷出.他要返回时,必须向相反

40、的方向释放氧气,同时还要留一部分氧气供返回途中呼吸.设他的耗氧率R是2.510-4kg/s,问:要最大限度地节省氧气,并安全返回飞船,所用掉的氧气是多少?【解析】设喷出氧气的质量为m后,飞船获得的速度为v,喷气的过程中满足动量守恒定律,有: 0=(M-m)v+m(-v+v) 得v=mv/M 宇航员即以v匀速靠近飞船,到达飞船所需的时间 t=s/v=Ms/mv这段时间内耗氧m=Rt 故其用掉氧气m+m=2.2510-2/m+m因为(2.2510-2/m)m=2.510-2为常数, 所以当2.2510-2/m=m,即m=0.15kg时用掉氧气最少,共用掉氧气是m+m=0.3kg.【解题回顾】(1)

41、动量守恒定律中的各个速度应统一对应于某一惯性参照系,在本题中,飞船沿圆轨道运动,不是惯性参照系.但是,在一段很短的圆弧上,可以视飞船做匀速直线运动,是惯性参照系.(2)此题中氧气的速度是相对宇航员而不是飞船,因此,列动量守恒的表达式时,要注意速度的相对性,这里很容易出错误.(3)要注意数学知识在物理上的运用.【例9】质量为m的飞机以水平速度v0飞离跑道后逐渐上升,若飞机在此过程中水平速度保持不变,同时受到重力和竖直向上的恒定升力(该升力由其它力的合力提供,不含重力)。今测得当飞机在水平方向的位移为l时,它的上升高度为h,求:(1)飞机受到的升力大小;(2)从起飞到上升至h高度的过程中升力所作的

42、功及在高度h处飞机的动能。【解析】飞机水平速度不变 y方向加速度恒定 消去t即得 由牛顿第二定律 (2)升力做功 在h处 【例10】有三根长度皆为 l1.00m 的不可伸长的绝缘轻线,其中两根的一端固定在天花板上的 O 点,另一端分别拴有质量皆为 m1.00102kg 的带电小球 A 和 B,它们的电量分别为 一q 和 q,ql.00107C。A、B 之间用第三根线连接起来。空间中存在大小为 E1.00106N/C 的匀强电场,场强方向沿水平向右,平衡时 A、B 球的位置如图所示。现将 O、B 之间的线烧断,由于有空气阻力,A、B 球最后会达到新的平衡位置。求最后两球的机械能与电势能的总和与烧

43、断前相比改变了多少。(不计两带电小球间相互作用的静电力)【解析】图1中虚线表示 A、B 球原来的平衡位置,实线表示烧断后重新达到平衡的位置,其中、 分别表示细线加 OA、AB 与竖直方向的夹角。A 球受力如图2所示:重力 mg 竖直向下;电场力 qE 水平向左;细线OA 对 A 的拉力 T1,方向如图;细线 AB 对 A 的拉力 T2,方向如图。由平衡条件 B 球受力如图3所示:重力 mg 竖直向下;电场力 qE 水平向右;细线 AB 对 B 的拉力 T2,方向如图。由平衡条件 联立以上各式并代入数据,得由此可知,A、B 球重新达到平衡的位置如图4所示。与原来位置相比,A 球的重力势能减少了

44、B 球的重力势能减少了A 球的电势能增加了 B 球的电势能减少了两种势能总和减少了代入数据解得 J【例11】一传送带装置示意如图,其中传送带经过AB区域时是水平的,经过BC区域时变为圆弧形(圆弧由光滑模板形成,未画出),经过CD区域时是倾斜的,AB和CD都与BC相切。现将大量的质量均为m的小货箱一个一个在A处放到传送带上,放置时初速为零,经传送带运送到D处,D和A的高度差为h。稳定工作时传送带速度不变,CD段上各箱等距排列,相邻两箱的距离为L。每个箱子在A处投放后,在到达B之前已经相对于传送带静止,且以后也不再滑动(忽略经BC段时的微小滑动)。已知在一段相当长的时间T内,共运送小货箱的数目为N。这装置由电动机带动,传送带与轮子间无相对滑动,不计轮轴处的摩擦。求电动机的平均抽出功率。【解析】以地面为参考系(下同),设传送带的运动速度为v0,在水平段运输的过程中,小货箱先在滑动摩擦力作用下做匀加速运动,设这段路程为s,所用时间为t,加速度为a,则对小箱有s1/2at2 v0at 在这段时间内,传送带运动的路程为s0v0t 由以上可得s02s 用f表示小箱与传送带之间的滑动摩擦力,则传送带对小箱做功为Afs1/2mv02 传送带

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 重点行业资料库 > 自然科学

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。