1、等边三角形专项练习题双基训练1. 如图14-45,在等边ABC中,O是三个内角平分线的交点,ODAB,OEAC,则图中等腰三角形的个数是 。 2.如图14-46,ABC是等边三角形,D为BA的中点,DEAC,垂足为点E,EFAB,AE=1,则AD= ,EFC的周长= 。3.如图14-47,在等边ABC中,AE=CD,BGAD,求证:BP=2PG。纵向应用1. 如图14-48,已知等边ABC的ABC、ACB的平分线交于O点,若BC上的点E、F分别在OB、OC垂直平分线上,试说明EF与AB的关系,并加以证明。 2. 如图14-49,C是线段AB上的一点,ACD和BCE是两个等边三角形,点D、E在A
2、B同旁,AE交CD于点G,BD交CE于点H,求证:GHAB。3. 如图14-50,已知ABC是等边三角形,E是AC延长线上一点,选择一点D使得CDE是等边三角形,如果M是线段AD的中点,N是线段BE的中点,求证:CMN是等边三角形。4. 如图14-51,C是线段AB上一点,分别以BC、AC为边作等边ACD和CBE,M为AE的中点,N为DB的中点,求证:CMN为等边三角形。 5. 如图14-52,在四边形ABCD中,A+B=1200,AD=BC,以CD为边向形外作等边CDE,连结AE,求证:ABE为等边三角形。6. 如图14-53,已知ABC是等边三角形,D为AC上一点,1=2,BD=CE,求证
3、:ADE是等边三角形。7. 如图14-54,设在四边形ABCD中,A+B=1200,AD=BC,M、N、P分别是AC、BD、CD的中点。求证:MNP是等边三角形。8. 如图14-55,在等腰梯形ABCD中,ABCD,ABCD,AD=BC,对角线AC、BD交于点O,AOB=600,且E、F分别是OD、OA的中点,M是BC的中点,求证:EFM是等边三角形。 9. 如图14-56,在ABCD中,ABE和BCF都是等边三角形,求证:DEF是等边三角形。10. 如图14-57,已知D为等边ABC内一点,DA=DC,P点在ABC外,且CP=CA,CD平分PCB,求P。横向拓展1. 如图14-58,已知P是
4、等边三角形ABC内一点,APB:CPA=5:6:7,求以PA、PB、PC为边长的三角形的三内角之比。 2. 如图14-59,点O为等边ABC内一点,AOB=1100,BOC=1350,试问:(1)以OA、OB、OC为边,能否构成三角形?若能,请求出该三角形各内角的度数;若不能,请说明理由;(2)如果AOB大小保持不变,那么当BOC等于多少度时,以OA、OB、OC为边的三角形是一个直角三角形?3. 如图14-60,已知ABC是边长为1的等边三角形,BDC是顶角BDC为1200的等腰三角形,以点D为顶点作一个600角的两边分别交AB于点M,交AC于点N,连结MN,形成一个三角形。求证:AMN的周长
5、等于2。4.如图14-61,在ABC中,A=600,BEAC,垂足为E,CFAB,垂足为F,点D是BC的中点,BE、CF交于点M。(1)如果AB=AC,求证:DEF是等边三角形;(2)如果ABAC,试猜想DEF是不是等边三角形?如果DEF是等边三角形,请加以证明;如果DEF不是等边三角形,请说明理由; (3)如果CM=4cm,FM=5cm,求BE的长度。5.如图14-62,已知AO=10,P是射线ON上一动点(即P点可在射线ON上运动),AON=600。(1)OP为多少时,AOP为等边三角形?(2)OP为多少时,AOP为直角三角形?(3)OP为多少时,AOP为锐角三角形?(4)OP满足什么条件
6、时,AOP为钝角三角形?6.(1)如图14-63,下列每个图形都是由若干个边长为1的等边三角形组成的等边三角形,它们的边长分别为1,2,3,,设边长为n的等边三角形由s个小等边三角形组成,按此规律推断s与n有怎样的关系; (2) 现有一个等角六边形ABCDEF(六个内角都相等的六边形,如图14-64),它的四条边长分别是2、5、3、1,求这个等角六边形的周长;(3)(2)中的等角六边形能否用(1)中最小的等边三角形无空隙拼合而成?如果能,请求出需要这种小等边三角形的个数。参考答案;等边三角形;双基训练1.7个 2.2 9 3.提示:证ABDBCE,证BPG=600纵向应用;1.EF= 2.提示
7、:证GCH为等边三角形 3.提示:ECBDCA,ECNDCM 4.略 5.提示:证ADEBCE 6.提示:证ABDACE 7.略 8.略 9.提示:证ADEEBF 10.300。提示:连结BD,易证ABDCBD,再证CDPADB横向拓展1.2:3:4. 提示:将APC绕顶点C逆时针方向转600,点P转到点P的位置,连结PP 2.(1)能,500,550,750 (2)1500或1000 3.提示:延长AC至点E,使CE=BM,连结DE。证MDBEDC,MDNEDN 4.(1)略 (2)提示:证EDF=600 (3)12cm 5.(1)10 (2)5或20 (3)5OP20 (4)0OP20 6.(1)s=n2 (2)19. 提示:延长FA、CB交于点P,延长AF、DE交于点Q,延长ED、BC交于点R,可证PAB、QEF、RCD、PQR为等边三角形 (3)能,s=102-22-32-62=51(个)7