1、第三章,中值定理,应用,研究函数性质及曲线性态,利用导数解决实际问题,罗尔中值定理,拉格朗日中值定理,柯西中值定理,泰勒公式 (第三节),微分中值定理,与导数的应用,一、罗尔( Rolle )定理,第一节,二、拉格朗日( Lagrange )中值定理,三、柯西(Cauchy)中值定理,中值定理,第三章,费马(fermat)引理,一、罗尔( Rolle )定理,且,存在,证: 设,则,费马,证毕,罗尔( Rolle )定理,满足:,(1) 在区间 a , b 上连续,(2) 在区间 (a , b) 内可导,(3) f ( a ) = f ( b ),使,证:,故在 a , b 上取得最大值,M
2、和最小值 m .,若 M = m , 则,因此,若 M m , 则 M 和 m 中至少有一个与端点值不等,不妨设,则至少存在一点,使,注意:,1) 定理条件条件不全具备, 结论不一定,成立.,则由费马引理得,例如,使,2) 定理条件只是充分的.,本定理可推广为,在 ( a , b ) 内可导, 且,在( a , b ) 内至少存在一点,证明提示: 设,证 F(x) 在 a , b 上满足罗尔定理 .,例1. 证明方程,有且仅有一个小于1 的,正实根 .,证: 1) 存在性 .,则,在 0 , 1 连续 ,且,由介值定理知存在,使,即方程有小于 1 的正根,2) 唯一性 .,假设另有,为端点的区
3、间满足罗尔定理条件 ,至少存在一点,但,矛盾,故假设不真!,设,二、拉格朗日中值定理,(1) 在区间 a , b 上连续,满足:,(2) 在区间 ( a , b ) 内可导,至少存在一点,使,思路: 利用逆向思维找出一个满足罗尔定理条件的函数,作辅助函数,显然 ,在a, b 上连续,在(a, b)内可导,且,证:,问题转化为证,由罗尔定理知至少存在一点,即定理结论成立 .,拉氏,证毕,拉格朗日中值定理的有限增量形式:,推论: 若函数,在区间 I 上满足,则,在 I 上必为常数.,证: 在 I 上任取两点,格朗日中值公式 , 得,由 的任意性知,在 I 上为常数 .,令,则,例2. 证明等式,证
4、: 设,由推论可知,(常数),令 x = 0 , 得,又,故所证等式在定义域 上成立.,自证:,经验:,欲证,时,只需证在 I 上,例3. 证明不等式,证: 设,中值定理条件,即,因为,故,因此应有,三、柯西(Cauchy)中值定理,分析:,及,(1) 在闭区间 a , b 上连续,(2) 在开区间 ( a , b ) 内可导,(3)在开区间 ( a , b ) 内,至少存在一点,使,满足 :,问题转化为证,柯西,构造辅助函数,证: 作辅助函数,且,使,即,由罗尔定理知, 至少存在一点,思考: 柯西定理的下述证法对吗 ?,两个 不一定相同,错!,上面两式相比即得结论.,柯西定理的几何意义:,注
5、意:,弦的斜率,切线斜率,例4. 设,至少存在一点,使,证: 问题转化为证,设,则,在 0, 1 上满足柯西中值,定理条件,因此在 ( 0 , 1 ) 内至少存在一点 ,使,即,证明,例5. 试证至少存在一点,使,证:,法1 用柯西中值定理 .,则 f (x) , F(x) 在 1 , e 上满足柯西中值定理条件,令,因此,即,分析:,例5. 试证至少存在一点,使,法2 令,则 f (x) 在 1 , e 上满足罗尔中值定理条件,使,因此存在,内容小结,1. 微分中值定理的条件、结论及关系,罗尔定理,拉格朗日中值定理,柯西中值定理,2. 微分中值定理的应用,(1) 证明恒等式,(2) 证明不等
6、式,(3) 证明有关中值问题的结论,关键: 利用逆向思维设辅助函数,费马引理,思考与练习,1. 填空题,1) 函数,在区间 1, 2 上满足拉格朗日定理,条件, 则中值,2) 设,有,个根 , 它们分别在区间,上.,方程,2. 设,且在,内可导, 证明至少存,在一点,使,提示:,由结论可知, 只需证,即,验证,在,上满足罗尔定理条件.,设,3. 若,可导, 试证在其两个零点间一定有,的零点.,提示: 设,欲证:,使,只要证,亦即,作辅助函数,验证,在,上满足,罗尔定理条件.,4. 思考: 在,即,当,时,问是否可由此得出,不能 !,因为,是依赖于 x 的一个特殊的函数.,因此由上式得,表示 x
7、 从右侧以任意方式趋于 0 .,应用拉格朗日中值定理得,上对函数,作业,P134 7, 8 , 10 , 12 , 14 , *15,提示:,题*15.,题14. 考虑,第二节,费马(1601 1665),费马,法国数学家,他是一位律师,数学,只是他的业余爱好.,他兴趣广泛,博,览群书并善于思考,在数学上有许多,重大贡献.,他特别爱好数论,他提出,的费马大定理:,历经358年, 直到1993年才由美国普林斯顿大学的安德,鲁.怀尔斯教授经过十年的潜心研究才得到解决 .,引理是后人从他研究解决最值的方法中提炼出来的.,拉格朗日 (1736 1813),法国数学家.,他在方程论, 解析函数论,及数论
8、方面都作出了重要的贡献,近百,余年来, 数学中的许多成就都可直接或,间接地追溯到他的工作,他是对分析数学,产生全面影响的数学家之一.,柯西(1789 1857),法国数学家,他对数学的贡献主要集中,在微积分学,柯,西全集共有 27 卷.,其中最重要的是为巴黎综合学校,编写的分析教程,无穷小分析概论, 微积分,在几何上的应用 等,有思想有创建,广泛而深远 .,对数学的影响,他是经典分析的奠基人之一,他为微积,分所奠定的基础推动了分析数学的发展.,复变函数和微分方程方面 .,一生发表论文800余篇, 著书 7 本 ,备用题,求证存在,使,1. 设,可导,且,在,连续,,证: 设辅助函数,因此至少存
9、在,显然,在 上满足罗尔定理条件,即,使得,设,证明对任意,有,证:,2.,不妨设,三、其他未定式,二、,型未定式,一、,型未定式,第二节,洛必达法则,第三章,微分中值定理,函数的性态,导数的性态,函数之商的极限,导数之商的极限,转化,( 或 型),本节研究:,洛必达法则,洛必达,一、,存在 (或为 ),定理 1.,型未定式,(洛必达法则),( 在 x , a 之间),证:,无妨假设,在指出的邻域内任取,则,在以 x, a 为端点的区间上满足柯,故,定理条件:,西定理条件,存在 (或为 ),推论1.,定理 1 中,换为下列过程之一:,推论 2. 若,理1条件,则,条件 2) 作相应的修改 ,
10、定理 1 仍然成立.,洛必达法则,定理1,例1. 求,解:,原式,注意: 不是未定式不能用洛必达法则 !,洛,洛,例2. 求,解: 原式,思考: 如何求,( n 为正整数) ?,洛,二、,型未定式,存在 (或为),定理 2.,证: 仅就极限,存在的情形加以证明 .,(洛必达法则),1),的情形,从而,2),的情形.,取常数,可用 1) 中结论,3),时, 结论仍然成立. ( 证明略 ),说明: 定理中,换为,之一,条件 2) 作相应的修改 , 定理仍然成立.,定理2,例3. 求,解:,原式,例4. 求,解: (1) n 为正整数的情形.,原式,洛,例4. 求,(2) n 不为正整数的情形.,从
11、而,由(1),用夹逼准则,存在正整数 k , 使当 x 1 时,例4.,例3.,说明:,1) 例3 , 例4 表明,时,后者比前者趋于,更快 .,例如,事实上,用洛必达法则,2) 在满足定理条件的某些情况下洛必达法则不能解决 计算问题 .,3) 若,例如,极限不存在,不能用洛必达法则 !,即,三、其他未定式:,解决方法:,通分,取倒数,取对数,例5. 求,解: 原式,洛,解: 原式,例6. 求,通分,取倒数,取对数,洛,例7. 求,解:,利用 例5,例5,通分,取倒数,取对数,例8. 求,解: 注意到,原式,洛,例3,例9. 求,法1. 直接用洛必达法则.,下一步计算很繁 !,法2. 利用例3
12、结果.,原式,例3,例3,内容小结,洛必达法则,思考与练习,1. 设,是未定式极限 , 如果,是否,的极限也不存在 ? 举例说明 .,极限不存在 ,说明3),原式,分析:,说明3),分析:,3.,原式,洛,则,4. 求,解: 令,原式,洛,洛,作业,P138 1 (6),(7),(9),(12),(13),(16), *4,第三节,洛必达(1661 1704),法国数学家,他著有无穷小分析,(1696),并在该书中提出了求未定式极,限的方法,后人将其命名为“ 洛必达法,的摆线难题 ,以后又解出了伯努利提出的“ 最速降,线 ” 问题 ,在他去世后的1720 年出版了他的关于圆,锥曲线的书 .,则
13、 ”.,他在15岁时就解决了帕斯卡提出,求下列极限 :,解:,备用题,洛,则,原式 =,解: 令,(用洛必达法则),(继续用洛必达法则),解:,原式 =,第三节,洛,二、几个初等函数的麦克劳林公式,第三节,一、泰勒公式的建立,三、泰勒公式的应用,应用,目的用多项式近似表示函数.,理论分析,近似计算,泰勒公式,第三章,特点:,一、泰勒公式的建立,以直代曲,在微分应用中已知近似公式 :,需要解决的问题,如何提高精度 ?,如何估计误差 ?,x 的一次多项式,1. 求 n 次近似多项式,要求:,故,令,则,2. 余项估计,令,(称为余项) ,则有,公式 称为 的 n 阶泰勒公式 .,公式 称为n 阶泰
14、勒公式的拉格朗日余项 .,泰勒(Taylor)中值定理 :,阶的导数 ,时, 有,其中,则当,泰勒,公式 称为n 阶泰勒公式的佩亚诺(Peano) 余项 .,在不需要余项的精确表达式时 , 泰勒公式可写为,注意到,* 可以证明:, 式成立,特例:,(1) 当 n = 0 时, 泰勒公式变为,(2) 当 n = 1 时, 泰勒公式变为,给出拉格朗日中值定理,可见,误差,称为麦克劳林( Maclaurin )公式 .,则有,在泰勒公式中若取,则有误差估计式,若在公式成立的区间上,麦克劳林,由此得近似公式,二、几个初等函数的麦克劳林公式,其中,麦克劳林公式,其中,麦克劳林公式,麦克劳林公式,类似可得
15、,其中,其中,麦克劳林公式,已知,其中,因此可得,麦克劳林公式,三、泰勒公式的应用,1. 在近似计算中的应用,误差,M 为,在包含 0 , x 的某区间上的上界.,需解问题的类型:,1) 已知 x 和误差限 , 要求确定项数 n ;,2) 已知项数 n 和 x , 计算近似值并估计误差;,3) 已知项数 n 和误差限 , 确定公式中 x 的适用范围.,例1. 计算无理数 e 的近似值 , 使误差不超过,解: 已知,令 x = 1 , 得,由于,欲使,由计算可知当 n = 9 时上式成立 ,因此,的麦克劳林公式为,说明: 注意舍入误差对计算结果的影响.,本例,若每项四舍五入到小数点后 6 位,则
16、,各项舍入误差之和不超过,总误差限为,这时得到的近似值不能保证误差不超过,因此计算时中间结果应比精度要求多取一位 .,例2. 用近似公式,计算 cos x 的近似值,使其精确到 0.005 , 试确定 x 的适用范围.,解: 近似公式的误差,令,解得,即当,时, 由给定的近似公式计算的结果,能准确到 0.005 .,2. 利用泰勒公式求极限,例3. 求,解:,由于,用洛必达法则不方便 !,3. 利用泰勒公式证明不等式,例4. 证明,证:,内容小结,1. 泰勒公式,其中余项,当,时为麦克劳林公式 .,2. 常用函数的麦克劳林公式 ( P142 P144 ),3. 泰勒公式的应用,(1) 近似计算
17、,(3) 其他应用,求极限 , 证明不等式 等.,(2) 利用多项式逼近函数,例如,泰勒多项式逼近,泰勒多项式逼近,思考与练习,计算,解:,原式,第四节,作业 P145 1 ; 4 ; 5 ; 7 ; 8;*10 (1), (2),泰勒 (1685 1731),英国数学家,他早期是牛顿学派最,优秀的代表人物之一 ,重要著作有:,正的和反的增量方法(1715),线性透视论(1719),他在1712 年就得到了现代形式的泰勒公式 .,他是有限差分理论的奠基人 .,麦克劳林 (1698 1746),英国数学家,著作有:,流数论(1742),有机几何学(1720),代数论(1742),在第一本著作中给
18、出了后人以他的名字命名的,麦克劳林级数 .,证: 由题设对,备用题 1.,有,且,点,下式减上式 , 得,令,两边同乘 n !,= 整数 +,假设 e 为有理数,( p , q 为正整数) ,则当 时,等式左边为整数;,矛盾 !,2. 证明 e 为无理数 .,证:,故 e 为无理数 .,等式右边不可能为整数.,第四节,一、函数单调性的判定法,二、曲线的凹凸与拐点,函数的单调性与,曲线的凹凸性,第三章,一、 函数单调性的判定法,若,定理 1. 设函数,则 在 I 内单调递增,(递减) .,证: 无妨设,任取,由拉格朗日中值定理得,故,这说明 在 I 内单调递增.,在开区间 I 内可导,证毕,例1
19、. 确定函数,的单调区间.,解:,令,得,故,的单调增区间为,的单调减区间为,说明:,单调区间的分界点除驻点外,也可是导数不存在的点.,例如,2) 如果函数在某驻点两边导数同号, 则不改变函数的单调性 .,例如,例2. 证明,时, 成立不等式,证: 令,从而,因此,且,证,证明,* 证明,令,则,从而,即,定义 . 设函数,在区间 I 上连续 ,(1) 若恒有,则称,图形是凹的;,(2) 若恒有,则称,图形是凸的 .,二、曲线的凹凸与拐点,连续曲线上有切线的凹凸分界点称为拐点 .,拐点,定理2.(凹凸判定法),(1) 在 I 内,则 f (x) 在 I 内图形是凹的 ;,(2) 在 I 内,则
20、 f (x) 在 I 内图形是凸的 .,证:,利用一阶泰勒公式可得,两式相加,说明 (1) 成立;,(2),设函数,在区间I 上有二阶导数,证毕,例3. 判断曲线,的凹凸性.,解:,故曲线,在,上是向上凹的.,说明:,1) 若在某点二阶导数为 0 ,2) 根据拐点的定义及上述定理, 可得拐点的判别法如下:,若曲线,或不存在,的一个拐点.,则曲线的凹凸性不变 .,在其两侧二阶导数不变号,例4. 求曲线,的拐点.,解:,不存在,因此点 ( 0 , 0 ) 为曲线,的拐点 .,凹,凸,对应,例5. 求曲线,的凹凸区间及拐点.,解: 1) 求,2) 求拐点可疑点坐标,令,得,3) 列表判别,故该曲线在
21、,及,上向上凹,向上凸 ,点 ( 0 , 1 ) 及,均为拐点.,凹,凹,凸,内容小结,1. 可导函数单调性判别,在 I 上单调递增,在 I 上单调递减,2.曲线凹凸与拐点的判别,拐点, 连续曲线上有切线的凹凸分界点,思考与练习,上,则,或,的大小顺序是 ( ),提示: 利用,单调增加 ,及,B,1. 设在,.,2. 曲线,的凹区间是,凸区间是,拐点为,提示:,及,作业 P152 3 (1),(7) ; 5 (2), (4) ; 9 (3), (6) ; 10 (3) ; 13 ; 14 ; *15,;,;,第五节,有位于一直线的三个拐点.,1. 求证曲线,证明:,备用题,令,得,从而三个拐点
22、为,因为,所以三个拐点共线.,=,证明:,当,时, 有,证明: 令, 则,是凸函数,即,2 .,(自证),第五节,二、最大值与最小值问题,一、函数的极值及其求法,第五节,函数的极值与,最大值最小值,第三章,定义:,在其中当,时,(1),则称 为 的极大值点 ,称 为函数的极大值 ;,(2),则称 为 的极小值点 ,称 为函数的极小值 .,极大值点与极小值点统称为极值点 .,一、函数的极值及其求法,注意:,为极大值点,为极小值点,不是极值点,2) 对常见函数, 极值可能出现在导数为 0 或 不存在的点.,1) 函数的极值是函数的局部性质.,例如 ,为极大值点,是极大值,是极小值,为极小值点,函数
23、,定理 1 (极值第一判别法),且在空心邻域,内有导数,(自证),点击图中任意处动画播放暂停,例1. 求函数,的极值 .,解:,1) 求导数,2) 求极值可疑点,令,得,令,得,3) 列表判别,是极大值点,,其极大值为,是极小值点,,其极小值为,定理2 (极值第二判别法),二阶导数 , 且,则 在点 取极大值 ;,则 在点 取极小值 .,证: (1),存在,由第一判别法知,(2) 类似可证 .,例2. 求函数,的极值 .,解: 1) 求导数,2) 求驻点,令,得驻点,3) 判别,因,故 为极小值 ;,又,故需用第一判别法判别.,定理3 (判别法的推广),则:,数 , 且,1) 当 为偶数时,是
24、极小点 ;,是极大点 .,2) 当 为奇数时,为极值点 , 且,不是极值点 .,当 充分接近 时, 上式左端正负号由右端第一项确定 ,故结论正确 .,证:,利用 在 点的泰勒公式 ,可得,例如 , 例2中,极值的判别法( 定理1 定理3 ) 都是充分的.,说明:,当这些充分条件不满足时, 不等于极值不存在 .,例如:,为极大值 ,但不满足定理1, 定理3 的条件.,二、最大值与最小值问题,则其最值只能,在极值点或端点处达到 .,求函数最值的方法:,(1) 求 在 内的极值可疑点,(2) 最大值,最小值,特别:,当 在 内只有一个极值可疑点时,当 在 上单调时,最值必在端点处达到.,若在此点取极
25、大 值 , 则也是最大 值 .,(小),对应用问题 , 有时可根据实际意义判别求出的可疑点,是否为最大 值点或最小值点 .,(小),例3. 求函数,在闭区间,上的最大值和最小值 .,解: 显然,且,故函数在,取最小值 0 ;,因此也可通过,例3. 求函数,说明:,求最值点.,与,最值点相同 ,由于,令,( 自己练习 ),在闭区间,上的最大值和最小值 .,( k 为某常数 ),例4. 铁路上 AB 段的距离为100 km , 工厂C 距 A 处20,AC AB ,要在 AB 线上选定一点 D 向工厂修一条,已知铁路与公路每公里货运,为使货物从B 运到工,解: 设,则,令,得,又,所以 为唯一的,
26、极小值点 ,故 AD =15 km 时运费最省 .,总运费,厂C 的运费最省,从而为最小值点 ,问D点应如何取?,km ,公路,价之比为3:5 ,例5. 把一根直径为 d 的圆木锯成矩形梁 ,问矩形截面,的高 h 和 b 应如何选择才能使梁的抗弯截面模量最大?,解: 由力学分析知矩形梁的抗弯截面模量为,令,得,从而有,即,由实际意义可知 , 所求最值存在 ,驻点只一个,故所求,结果就是最好的选择 .,用开始移动,例6. 设有质量为 5 kg 的物体置于水平面上 , 受力 F 作,解: 克服摩擦的水平分力,正压力,即,令,则问题转化为求,的最大值问题 .,设摩擦系数,令,解得,而,因而 F 取最
27、小值 .,解:,即,令,则问题转化为求,的最大值问题 .,清楚(视角 最大) ?,观察者的眼睛1.8 m ,例7. 一张 1.4 m 高的图片挂在墙上 , 它的底边高于,解: 设观察者与墙的距离为 x m ,则,令,得驻点,根据问题的实际意义, 观察者最佳站位存在 ,唯一,驻点又,因此观察者站在距离墙 2.4 m 处看图最清楚 .,问观察者在距墙多远处看图才最,存在一个取得最大利润的生产水平? 如果存在, 找出它来.,售出该产品 x 千件的收入是,例8. 设某工厂生产某产品 x 千件的成本是,解: 售出 x 千件产品的利润为,问是否,故在 x2 = 3.414千件处达到最大利润,而在 x1=
28、0.586千件处发生局部最大亏损.,说明:在经济学中,称为边际成本,称为边际收入,称为边际利润,由此例分析过程可见, 在给出最大利润的生产水平上,即边际收入边际成本,(见右图),即,收益最大,亏损最大,内容小结,1. 连续函数的极值,(1) 极值可疑点 :,使导数为0 或不存在的点,(2) 第一充分条件,过,由正变负,为极大值,过,由负变正,为极小值,(3) 第二充分条件,为极大值,为极小值,(4) 判别法的推广,定理3,定理3,最值点应在极值点和边界点上找 ;,应用题可根据问题的实际意义判别 .,思考与练习,2. 连续函数的最值,1. 设,则在点 a 处( ).,的导数存在 ,取得极大值 ;
29、,取得极小值;,的导数不存在.,B,提示: 利用极限的保号性,2. 设,(A) 不可导 ;,(B) 可导, 且,(C) 取得极大值 ;,(D) 取得极小值 .,D,提示: 利用极限的保号性 .,3. 设,是方程,的一个解,若,且,(A) 取得极大值 ;,(B) 取得极小值 ;,(C) 在某邻域内单调增加 ;,(D) 在某邻域内单调减少 .,提示:,A,作业,P162 1 (5), (9); 2 ; 3 ; 5 ; 10; 14; 15,第六节,试问,为何值时,在,时取得极值,还是极小.,解:,由题意应有,又,备用题 1.,求出该极值,并指出它是极大,即,试求,解:,2.,故所求最大值为,第六节
30、,第六节,一、 曲线的渐近线,二、 函数图形的描绘,函数图形的描绘,第三章,无渐近线 .,点 M 与某一直线 L 的距离趋于 0,一、 曲线的渐近线,定义 . 若曲线 C上的点M 沿着曲线无限地远离原点,时,则称直线 L 为,曲线C 的渐近线 .,例如, 双曲线,有渐近线,但抛物线,或为“纵坐标差”,1. 水平与铅直渐近线,若,则曲线,有水平渐近线,若,则曲线,有铅直渐近线,例1. 求曲线,的渐近线 .,解:,为水平渐近线;,为铅直渐近线.,2. 斜渐近线,斜渐近线,若,( P76 题14),例2. 求曲线,的渐近线.,解:,又因,为曲线的斜渐近线 .,二、函数图形的描绘,步骤 :,1. 确定
31、函数,的定义域 ,期性 ;,2. 求,并求出,及,3. 列表判别增减及凹凸区间 , 求出极值和拐点 ;,4. 求渐近线 ;,5. 确定某些特殊点 , 描绘函数图形 .,为 0 和不存在,的点 ;,并考察其对称性及周,例3. 描绘,的图形.,解: 1) 定义域为,无对称性及周期性.,2),3),(拐点),4),例4. 描绘方程,的图形.,解: 1),定义域为,2) 求关键点.,原方程两边对 x 求导得,两边对 x 求导得,3) 判别曲线形态,(极大),(极小),4) 求渐近线,为铅直渐近线,无定义,又因,即,5) 求特殊点,为斜渐近线,6)绘图,(极大),(极小),斜渐近线,铅直渐近线,特殊点,
32、例5. 描绘函数,的图形.,解: 1) 定义域为,图形对称于 y 轴.,2) 求关键点,3) 判别曲线形态,(极大),(拐点),为水平渐近线,5) 作图,4) 求渐近线,水平渐近线 ; 垂直渐近线;,内容小结,1. 曲线渐近线的求法,斜渐近线,按作图步骤进行,2. 函数图形的描绘,思考与练习,1. 曲线,(A) 没有渐近线;,(B) 仅有水平渐近线;,(C) 仅有铅直渐近线;,(D) 既有水平渐近线又有铅直渐近线.,提示:,拐点为 ,凸区间是 ,2. 曲线,的凹区间是 ,提示:,及,渐近线 .,P76 14 (2); P169 2 ; 5,作业,第七节,备用题 求笛卡儿叶形线,的渐近线 .,解
33、: 令 y = t x ,代入原方程得曲线的参数方程 :,因,所以笛卡儿叶形线有斜渐近线,叶形线,笛卡儿叶形线,笛卡儿叶形线,参数的几何意义:,图形在第四象限,图形在第二象限,图形在第一象限,点击图中任意点动画开始或暂停,第七节,曲线的弯曲程度,与切线的转角有关,与曲线的弧长有关,主要内容:,一、 弧微分,二、 曲率及其计算公式,三、 曲率圆与曲率半径,平面曲线的曲率,第三章,一、 弧微分,设,在(a , b)内有连续导数,其图形为 AB,弧长,则弧长微分公式为,或,几何意义:,若曲线由参数方程表示:,二、曲率及其计算公式,在光滑弧上自点 M 开始取弧段, 其长为,对应切线,定义,弧段 上的平
34、均曲率,点 M 处的曲率,注意: 直线上任意点处的曲率为 0 !,转角为,例1. 求半径为R 的圆上任意点处的曲率 .,解: 如图所示 ,可见: R 愈小, 则K 愈大 , 圆弧弯曲得愈厉害 ;,R 愈大, 则K 愈小 , 圆弧弯曲得愈小 .,有曲率近似计算公式,故曲率计算公式为,又,曲率K 的计算公式,二阶可导,设曲线弧,则由,说明:,(1) 若曲线由参数方程,给出, 则,(2) 若曲线方程为,则,例2. 我国铁路常用立方抛物线,作缓和曲线,处的曲率.,点击图片任意处播放暂停,说明:,铁路转弯时为保证行车,平稳安全,求此缓和曲线在其两个端点,且 l R.,其中R是圆弧弯道的半径, l 是缓和
35、曲线的长度,离心力必须,连续变化 ,因此铁道的,曲率应连续变化 .,例2. 我国铁路常用立方抛物线,作缓和曲线,且 l 0 时,从而,在,上单调增.,得,例9. 设,在,上可导, 且,证明 f ( x ) 至多只有一个零点 .,证: 设,则,故,在,上连续单调递增,从而至多只有,一个零点 .,又因,因此,也至多只有一个零点 .,思考: 若题中,改为,其他不变时, 如何设辅助函数?,例10. 求数列,的最大项 .,证: 设,用对数求导法得,令,得,因为,在,只有唯一的极大值点,因此,在 处,也取最大值 .,又因,中的最大项 .,极大值,列表判别:,例11. 证明,证: 设, 则,故,时,单调增加
36、 ,从而,即,思考: 证明,时, 如何设辅助,函数更好 ?,提示:,例12. 设,在,上,存在 , 且单调,递减 ,有,证: 设,则,所以当,令,得,即所证不等式成立 .,证明对一切,例13.,证: 只要证,利用一阶泰勒公式, 得,故原不等式成立.,例14. 证明当 x 0 时,证: 令,则,法1. 由,在,处的二阶泰勒公式 ,得,故所证不等式成立 .,与 1 之间),法2. 列表判别.,即,例15. 求,解法1 利用中值定理求极限,原式,解法2 利用泰勒公式,令,则,原式,解法3 利用洛必达法则,原式,P182 5 ; *7 ; *8 ; 10 (2) , (3) ; 11 (1) ; 17
37、 ; 20,作业,备用题,1. 设函数,上具有二阶导数,且满足,证:,故序列,发散.,(2007 考研),保号性 定理,2. 设,在区间,上连续 , 且,试证存在,使,证: 不妨设,必有,使,故,保号性 定理,必有,使,故,又在,上,连续,由零点定理知, 存在,使,3. 已知函数,内可导, 且,证: (1) 令,故存在,使,即,(2005 考研),内可导, 且,(2) 根据拉格朗日中值定理, 存在,使,3. 已知函数,阶导数, 且存在相等的最大值, 并满足,4. 设函数,证:,据泰勒定理, 存在,使,由此得,即有,(2007 考研),情形1.,则有,内具有二,阶导数, 且存在相等的最大值, 并满足,情形2.,因此据零点定理, 存在,即有,则有,4. 设函数,应用罗尔,定理得,内具有二,