数值分析-函数逼近与曲线拟合.doc

上传人:龙*** 文档编号:4527458 上传时间:2019-11-16 格式:DOC 页数:67 大小:3.82MB
下载 相关 举报
数值分析-函数逼近与曲线拟合.doc_第1页
第1页 / 共67页
数值分析-函数逼近与曲线拟合.doc_第2页
第2页 / 共67页
数值分析-函数逼近与曲线拟合.doc_第3页
第3页 / 共67页
数值分析-函数逼近与曲线拟合.doc_第4页
第4页 / 共67页
数值分析-函数逼近与曲线拟合.doc_第5页
第5页 / 共67页
点击查看更多>>
资源描述

第三章 函数逼近和曲线拟合1 函数的逼近和基本概念1.1问题的提出多数计算机的硬件系统只提供加、减、乘、除四种算术运算指令,因此为了计算大多数有分析表达式的函数的值,必须产生可用四则运算进行计算的近似式,一般为多项式和有理分式函数.实际上,我们已经接触到两种逼近多项式,一种是泰乐多项式,一种是插值多项式.泰乐多项式是一种局部方法,误差分布不均匀,满足一定精度要求的泰乐多项式次数太高,不宜在计算机上直接使用.例如,设是上的光滑函数,它的Taylor级数,在上收敛。当此级数收敛比较快时,。这个误差分布是不均匀的。当时,而离开零点增加时,单调增加,在误差最大。为了使的所有满足,必须选取足够大的,这显然是不经济的。插值函数出现的龙格现象表明,非节点处函数和它的插值多项式相差太大。更重要的是,实际中通过观测得到的节点数据往往有各种误差,此时如果要求逼近函数过全部节点,相当于保留全部数据误差,这是不适宜的。如图1所示,给出五个点上的实验测量数据,理论上的结果应该满足线性关系,即图1中的实线。由于实验数据的误差太大,不能用过任意两点的直线逼近函数。如果用过5个点的4次多项式逼近线

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育教学资料库 > 课件讲义

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。