第三章 函数逼近和曲线拟合1 函数的逼近和基本概念1.1问题的提出多数计算机的硬件系统只提供加、减、乘、除四种算术运算指令,因此为了计算大多数有分析表达式的函数的值,必须产生可用四则运算进行计算的近似式,一般为多项式和有理分式函数.实际上,我们已经接触到两种逼近多项式,一种是泰乐多项式,一种是插值多项式.泰乐多项式是一种局部方法,误差分布不均匀,满足一定精度要求的泰乐多项式次数太高,不宜在计算机上直接使用.例如,设是上的光滑函数,它的Taylor级数,在上收敛。当此级数收敛比较快时,。这个误差分布是不均匀的。当时,而离开零点增加时,单调增加,在误差最大。为了使的所有满足,必须选取足够大的,这显然是不经济的。插值函数出现的龙格现象表明,非节点处函数和它的插值多项式相差太大。更重要的是,实际中通过观测得到的节点数据往往有各种误差,此时如果要求逼近函数过全部节点,相当于保留全部数据误差,这是不适宜的。如图1所示,给出五个点上的实验测量数据,理论上的结果应该满足线性关系,即图1中的实线。由于实验数据的误差太大,不能用过任意两点的直线逼近函数。如果用过5个点的4次多项式逼近线