1、毕业论文开题报告数学与应用数学关于函数方程的求解一、选题的意义当今世界,在数学研究的许多领域包括微分方程、动力系统、泛函分析、代数学、几何学、拓扑学、概率论等都涉及到函数方程问题,在计算机科学中迭代理论和方法也涉及函数方程问题,在航空技术、遥感技术、经济学理论、心理学理论等诸多方面也提出了许多函数方程模型函数方程因此一直受到广泛关注,是当今数学研究的一个十分重要的课题函数方程又是一个经典的课题,早在18世纪初期,欧拉LEULER、拉格朗日LAGRANGE等著名数学大师就已经利用函数方程解决问题了1769年达朗贝尔DA1CMBERT在讨论力的合成法则时,导出了函数方程2FXYFXYFXFY177
2、3年法国数学家蒙日在研究曲面理论时又再一次运用了函数方程,并且给出了关于函数方程的一般阐述;同年,拉普拉斯又对另一类广泛应用的函数方程提供了解法;从1821年,数学家柯西ALCAUCHY对一系列函数方程,如2FXYFXFYFXYFXFYFXYFXYFXFY等作了深入的研究,并创造了一种求解函数方程的方法柯西CAUCHY法;另外,函数方程还受到了阿贝尔NHABEL、维尔斯特拉斯、哈代GHHARDY以及阿采尔等数学家的充分重视被应用于不同的领域,取得了许多令人意想不到的结果例如,罗巴切夫斯基就曾将平行角12XKTGXE定义成函数方程2XYFFXFY的解20世纪初期,以谢留德为首的波兰学派对函数方程
3、进行了些开创性的研究工作20世纪40年代前后,苏联数学家盖尔谢凡诺夫教授进一步发展了函数方程的某些理论,并成功解决了一系列有关力学、渗透理论、弹性理论和地层动力理论等问题这些问题都与谢留德函数方程有关长期以来,尽管很多数学工作者付出艰辛的努力,并获得了大量结果,但遗憾的是至今仍没有1像微分方程那样,建立起完整、系统的函数方程理论,就连一般的解法也较少实践证明,不论是对函数方程本身的研究或是函数方程中未知函数的求解者,都需要有良好的数学素质才行正是由于这个原因,20世纪以来函数方程常常出现在国际数学奥林匹克IMO竞赛试题之中,成为当今数学竞赛的一个重要领域,越来越受到数学竞赛命题者的青睐,并引起
4、国内外数学教育界的广泛关注正是由于函数方程的重要意义,所以我选择这个课题并做一些研究二、研究的主要内容,拟解决的主要问题(阐述的主要观点)由于函数方程的异常复杂和困难,二百多年间发展缓慢、步履维艰至今还没有关于函数方程的统一理论和解函数方程的一般方法,也没有关于函数方程的解的存在性和唯一性的判断准则不仅如此,甚至还有一些函数方程至今未能解出本文试图对函数方程的解法主要是初等解法作一个初步的总结但由于函数方程类型十分复杂,想对它进行适当分类就比较困难,加之还没有形成一般的理论和一般的方法,以及受我能力所限,故欲对这一课题作系统、完整的叙述,似乎不现实,所以本文就我感兴趣的方法作一介绍三、研究(工
5、作)步骤、方法及措施(思路)(1)研究步骤、方法第一阶段搜集资料,确定论文选题和主要阅读文献,完成任务书;(文献研究法、比较研究法)第二阶段整理资料完成开题报告和研究综述,形成论文框架;(文献研究法、比较研究法、经验总结法)第三阶段通过刊物查阅和网上资料收集,充实资料,完成初稿;(文献研究法、比较研究法)第四阶段按要求修改初稿;第五阶段修改毕业论文完成第二稿、第三稿,最后定稿(2)主要措施1、利用网络、书籍、杂志等渠道收集信息资料,整理资料、筛选信息,和老师同学进行讨论;2、分类,汇总,修改资料,形成初稿;3、在老师的指导下,进一步修改,最终定稿四、毕业论文(设计)提纲1绪言2函数方程的一些概
6、念3函数方程的求解方法31换元法32待定系数法233递归数列法34数学归纳法35辅助数列法36利用方程组求解函数方程37代值减元法38柯西法求解函数方程五、主要参考文献1王向东函数方程及其应用M上海上海科学技术文献出版社,2003122韩苏函数迭代与函数方程J数学通讯,2001,24第36页3马俊青函数方程求解的迭代周期方法的研究J甘肃联合大学学报(自然科学版),2007,21(4)第121页4蒋强求解函数方程五法J中学教研(数学),1993,8第21页5丁钧巧用换元法解函数方程J河南科技,2010,4第80页6周晓文函数方程问题的求解策略J中学数学教学,2003,05第2930页7俞宏毓函数方程的一些解法J数学教学通讯,2005,10第45页8王晖函数方程的解法浅析J消费导刊,2008,12第164页9胡昱函数方程的一些解法J西昌师范高等专科学校学报,2002,14(3)第79页10阿拉坦巴根试论用初等方法解函数方程J内蒙古名族大学学报,2008,14(2)第7页11张桦函数方程研究J文教资料,2005,29第169170页12蒋华函数方程有效解题方法探析J才智,2010,05第45页