浙江杭州2010年第二次高考科目教学质量检测.DOC

上传人:国*** 文档编号:457514 上传时间:2018-10-09 格式:DOC 页数:9 大小:262KB
下载 相关 举报
浙江杭州2010年第二次高考科目教学质量检测.DOC_第1页
第1页 / 共9页
浙江杭州2010年第二次高考科目教学质量检测.DOC_第2页
第2页 / 共9页
浙江杭州2010年第二次高考科目教学质量检测.DOC_第3页
第3页 / 共9页
浙江杭州2010年第二次高考科目教学质量检测.DOC_第4页
第4页 / 共9页
浙江杭州2010年第二次高考科目教学质量检测.DOC_第5页
第5页 / 共9页
点击查看更多>>
资源描述

1、第 1 页 共 9 页 浙江省杭州市 2010年第二次高考科目教学质量检测 数学试题(理科) 考生须知: 1本卷满分 150 分,考试时间 120 分钟。 2答题前,在答题卷密封区内填写学校、班级和姓名。 3所有答案必须写在答题卷上,写在试题卷上无效。 4考试结束,只需上交答题卷。 参考公式: 如果事件 A、 B 互斥,那么 球的体积公式 24RS P(A+B)=P(A)+P(B) V Sh 如果事件 A、 B 相互独立,那么 其中 S 表示棱柱的底面积, h 表示棱柱的高 P(AB)=P(A)P(B) 棱锥的体积公式 如果事件 A 在一次试验中发生的概率是 13V Sh P,那么 n 次独立

2、重复试验中恰好发生 k 其中 S 表示棱锥的底面积, h 表示棱锥的高 次的概率 棱台的体积公式 knkknn PPCkP )1()( 1 1 2 21 ()3V h S S S S 球的表面积公式 其中 S1、 S2 分别表示棱台的上、下底面积, 24RS h表示棱台的高 球的体积公式 334 RV 球 其中 R 表示球的半径 一、选择题:本大题共 10 小题,每小题 5 分,共 50 分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1设 13(22ii 是虚数单位),设集合 1,0,1M ,则下列结论中正确的是( )A 3(1 ) M B 3 M C 1 M D 2 M 2如图,

3、是一个几何体的三视图,侧视图和正视图均为矩形,俯 视图为正三角形,尺寸如图,则该几何体的侧面积为( ) A 6 B 123 C 24 D 3 3使“ lg 1m ”成立的一个充分不必要条件是 ( ) A (0, )m B 1,2m 第 2 页 共 9 页 C 0 10m D m 1 4在阳光体育活动中,全校学生积极参加室外跑步,高三( 1)班每个学生上个月跑步的路程从大到小排列依次是 1 2 3 50, , , ,a a a a (任意 11, 2 , , 4 9 , iii a a ),如图是计算该班上个 月跑步路程前 10 名学生的平均路程的程序框图, 则图中判断框和处理框内应分别填写(

4、) A 10, 9sia B 11, 11sia C 11, 10sia D 10, 10sia 5在二项式 25( 1)( 1)x x x 的展开式中,含 4x 项的系数是 ( ) A -25 B -5 C 5 D 25 6平面上 A, B, C 三点满足 ( ) : ( ) : ( ) 1 : 2 : 3B A C A C A A B A B B C ,则这三点( ) A组成锐角三角形 B组成直角三角 形 C组成钝角三角形 D在同一条直线上 7设函数 ( ) ln ( 1)( 2 )f x x x 的定义域是 A,函数 ( ) lg ( 2 1)xxg x a 的定义域是 B,若AB ,则

5、正数 a 的取值范围是 ( ) A 3a B 3a C 5a D 5a 8过双曲线 22 1( 0 , 0 )xy abab 的一个焦点 F 引它的渐近线的垂线,垂足为 M,延长 FM 交y 轴于 E,若 FM=2ME,则该双曲线的 离心主经为 ( ) A 3 B 2 C 3 D 2 9设一个小物体在一个大空间中可以到达的部分空间与整个空间的体积的比值为可达率,现用半径为 1 的小球扫描检测棱长为 10 的正方体内部,则可达率落在的区间是( ) A (0.96,0.97) B (0.97,0.98) C (0.98,0.99) D (0.99,1) 10如图,阴影是集合 22 ( , ) |

6、( c o s ) ( s i n ) 4 , 0 P x y x y 在平面直角坐标系上表示的点集,则阴影中间形如“水滴”部分的面积等于( ) A 3 B 7 33 第 3 页 共 9 页 C 11 36 D 2 二、填空题:本大题共 7 小题,每小题 4 分,共 28 分。 11函数 00s in ( 1 0 ) c o s ( 4 0 ) , ( )y x x x R 的最大值是 。 12依次写出数列 *1 2 31, , , , ( )na a a a n N的法则如下:如果 2na 为自然数且未写过,则写1 2nnaa ,否则就写 1 3nnaa ,则 6a = 。(注意: 0 是自

7、然数) 13已知 A、 B 是圆 22: 16O x y上的两点,且 |AB=6,若以 AB 为直径的圆 M 恰好经过点 C( 1,-1),则圆心 M 的轨迹方程是 。 14观 察下列等式: 20( 1) 1;xx 2 1 2( 1) 1;x x x x 2 2 4 3 2( 1 ) 2 3 2 1 ;x x x x x x 2 3 6 5 4 3 2( 1 ) 3 6 7 6 3 1 ;x x x x x x x x ; 可能以推测, 25( 1)xx 展开式中,第五、六、七项的系数和是 。 15将 3 个不同的小球放入编号分别为 1, 2, 3, 4, 5, 6 的盒子内, 6 号盒中至少

8、有一个球的方法种数是 16如果实数 ,xy满足条件 101010xyyxy ,则 3 2 51xyx 的取值范围是 17已知函数 ( ) | | | | | | | |f x x a x a x b x b c ,若存在正常数 m ,使 ( ) 0fm ,则不等式 ( ) ( )f x f m 的解集是 。 三、解答题:本大题共 5 小题,共 72 分,解答应写出文字说明,证明过程或演算步骤。 18(本题满分 14 分)口袋中有 1 个红球、 2 个黄球、 3 个白球、 3 个黑球共 9 个球,从中任取 3 个球。 ( 1)求取出的球的颜色不全相同的概率; ( 2)记 为取出的球的颜色的种数,

9、求随机变量 的分布列及其数学期望 E 。 第 4 页 共 9 页 19 (本 题满 分 14 分) 在 ABC 中 ,角 A 、 B 、 C 的 对边 分别 为 ,abc,且满足( 2 ) .a c B A B C c C B C A ( 1)求角 B 的大小; ( 2)若 | | 6BA BC,求 ABC 面积的最大值。 20(本题满分 14 分)已知如图四棱锥 P ABCD 中,底面 ABCD 是平行四边形, PG 平面 ABC,垂足 G 在 AD 上,且 1 , . 2 , 43A G G D G B G C G B G C P G , E 是 BC 的中点。 ( 1)求证: PC BG

10、; ( 2)求异面直线 GE 与 PC 所成角的余弦值; ( 3)若 F 是 PC 上一点,且 , CFDF GC CP 求 的值。 21(本小题满分 15 分)已知椭圆的中心在原点,焦点在 x 轴上,长轴长是短轴长的 2 倍且经过点M( 2, 1),平行于 OM 的直线 l 交椭圆于 A、 B 两点。 ( 1)求椭圆的方程; ( 2)已知 ( , 0 ) , ( )| | | |M A M Be t p M A M B ,是否对任意的正实数 ,t ,都有 0ep 成立?请证明你的结论。 第 5 页 共 9 页 22(本题满分 15 分)设 32121( ) ( ) 3 ( , , 0 )32

11、 xabf x x x x x a b R a ( 1)当 121, 0时,设 12,xx是 ()fx的两个极值点, 如果 1212xx ,求证: ( 1) 3f; 如果 2 1 1 22 , 2 ( , )a x x x x x 且 且时,函数 2( ) ( ) 2 ( )g x f x x x 的最小值 为()ha ,求 ()ha 的最大值。 ( 2)当 120, 1时, 求函数 ( ) 3(ln 3 1)y f x x 的最小值。 对于任意的实数 ,abc,当 3abc 时,求证 3 3 3 9.a b ca b c 第 6 页 共 9 页 参考答案 一、选择题 : 本题考查基本知识和基

12、本运算每小题 5 分 , 满分 50 分 1 5ACBCB 6 10ABCBC 二、填空题 : 本题考查基本知识和基本运算每小题 4 分 , 满分 28 分 11 1 12 6 13 9)1()1( 22 yx 14 141 15 91 16 4, 7 17( m ,m) 三、解答题 : 本大题共 5 小题 , 满分 72 分 18 解( ) P=1 1/42 =41/42 5 分 () 842)1( P , 8443)2( P , 8439)3( P 5 分 842 0 538439284431842 E 4 分 19 解:( I)条件可化为 ( 2 ) c o s c o sa c B b

13、 C 根据正弦定理有 ( 2 s in s in ) c o s s in c o sA C B B C 3 分 2 s in c o s s in ( )A B C B,即 2 sin cos sinA B A 因为 sin 0A ,所以 2cos 2B ,即 4B 3 分 ( II)因为 | | 6BA BC 所以 | | 6CA ,即 2 6b , 2 分 根据余弦定理 2 2 2 2 c osb a c ac B , 可得 2262a c ac 2 分 有基本不等式可知 226 2 2 2 ( 2 2 )a c a c a c a c a c 即 3(2 2)ac , 故 ABC 的面

14、积 1 2 3 ( 2 1 )s i n2 4 2S a c B a c 即当 a =c= 236 时, 第 7 页 共 9 页 ABC 的面积的最大值为2 )12(3 4 分 20 解:()因为 PG底面 ABCD, 所以 PG BG, 又 BG CG, 所以 BG面 PGC, 所以 PC BG 4 分 ()建立如图空间直角坐标系,各点坐标如图所示, )4,2,0(),0,1,1( PCGE 1010|,c o s| PCGEPCGEPCGE 。 4 分 ()设 CF = CP, 则点 )4220( , F ,又 D( 23 , 23 , 0 ), ),4,221,23( DF 3 2 3

15、4( , , )2 1 2 1DF , GC ( 0, 2, 0), 由 GCDF 得 0 GCDF , 0)221(2 。 得 41 ,所以 CPCF = 41 6 分 21 解:( 1)设椭圆方程为 )0(12222 babyax则2811422222 bababa解得 , 椭圆方程 128 22 yx 5 分 ( 2)若 0pe 成立 ,则向量 )|( MBMBMAMAp 与 x 轴垂直 , 由菱形的几何性质知 , AMB 的平分线应与 x 轴垂直为此只需考察直线 MA,MB 的倾斜角是否互补即可 由已知 ,设直线 l 的方程为: mxy 21 2 分 由 0422128212222 m

16、mxxyxmxy3 分第 8 页 共 9 页 设直线 MA、 MB 的斜率分别为 k1, k2, 只需证明 k1+k2=0 即可 , 设21,21),(),( 2221112211 xykxykyxByxA 则0422 22 mmxx由 可得 , 42,2 22121 mxxmxx ,而 0)2)(2(4442422122 xx mmmm, 3 分 k1+k2=0, 直线 MA,MB 的倾斜角互补 故对任意的正实数 ,t ,都有 0pe 成立 2 分 22 解 : 解 ( ) 证明:当 1 1 , 2 0 时, 2( ) ( 1) 1f x a x b x , x1, x2 是方程 ( ) 0

17、fx 的两个根, 由 12xx 且 0a 得 (1) 0(2) 0ff , 即 04 2 1 0abab 所以 f ( 1) = a b + 2 = 3( a+b) + ( 4a +2b 1) + 3 3 3 分 设 12( ) ( )( )f x a x x x x , 所以2 1 2 122( ) ( ) ( ) ( ) ( )g x a x x x x a x x x xaa , 易知 2 0xx ,1 2 0xxa , 第 9 页 共 9 页 所以2212( ) ( )1( ) ( 2 )2x x x x ag x a a a 当且仅当112x x x x a 时 , 即 121111

18、2xxxxaa 时取等号 所以 1( ) ( 2)h a aa ( 2a ) 易知当 2a 时, ()ha 有最大值, 即m ax 9( ) (2) 2h a h 5 分 ( ) 当 1 0 , 2 1 时, ( ) 3xf x x , 所以 3 3(ln 3 1)xy x x 3 ( ln 3 ) 3 3 ( ln 3 1 )xxyx ,容易知道 y 是单调增函数, 且 1x 是 它 的一个零点,即也是唯一的零点 当 1x 时, 0y ;当 1x 时 , 0y , 故当 1x 时, 函数 ( ) 3(ln 3 1)y f x x 有最小值为 3ln3 4 分 由 知 3 3 ( l n 3 1 ) 3 l n 3x xx , 当 x 分别取 a、 b、 c 时有: 3 3(ln 3 1) 3 ln 3a aa ; 3 3(ln 3 1) 3 ln 3b bb ; 3 3(ln 3 1) 3 ln 3c cc 三式相加即得 3 分

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 重点行业资料库 > 1

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。