2008年湖北黄冈中学,第一课时:,范围与轨迹的探究:,课前导引,第一课时:,范围与轨迹的探究:,课前导引,第一课时:,范围与轨迹的探究:,课前导引,B,第一课时:,范围与轨迹的探究:,解析,解析,答案D,考点搜索,考点搜索,1.探索点的位置及参量的取值范围往往是综合已知条件和所学知识点,根据转化或数形结合的思想进行探索,直到结论显然为止.2.在解决数列和恒成立的问题时,要根据特殊和一般的辩证思想,从特殊的个体总结出一般的规律,对普遍的规律任何个体都会满足.,链接高考,链接高考,例1,链接高考,法一,例1,法二,点评从特殊的个体考察普遍的规律是高中阶段必须掌握的思维方式,本题先令x=0和x=1得到sin0,cos0,大大的缩小了的考察范围,为后面的解答提供的很大的方便.而解法二通过换元,使得式子更为规范.,例2,解析,例3在棱长为a的正方体ABCDA1B1C1D1中,E、F分别是棱BC、CD上的点,且BECF(1)当E、F在何位置时,B1FD1E;(2)当E、F在何位置时三棱锥C1CEF的体积