绝对经典神经网络,1.Gauss(高斯)函数:,2.反演S型函数:,3.拟多二次函数:,称为基函数的扩展常数或宽度,越小,径向基函数的宽度越小,基函数就越有选择性。,径向基函数(RBF),全局逼近和局部逼近,全局逼近网络,局部逼近网络,当神经网络的一个或多个可调参数(权值和阈值)对任何一个输出都有影响,则称该神经网络为全局逼近网络。,对网络输入空间的某个局部区域只有少数几个连接权影响网络的输出,则称该网络为局部逼近网络,学习速度很慢,无法满足实时性要求的应用,学习速度快,有可能满足有实时性要求的应用,RBF网络的工作原理,函数逼近:以任意精度逼近任一连续函数。一般函数都可表示成一组基函数的线性组合,RBF网络相当于用隐层单元的输出构成一组基函数,然后用输出层来进行线性组合,以完成逼近功能。,分类:解决非线性可分问题。RBF网络用隐层单元先将非线性可分的输入空间设法变换到线性可分的特征空间(通常是高维空间),然后用输出层来进行线性划分,完成分类功能。,RBF神经网络两种模型,正规化网络RN,广义网络GN,通用逼近器,模式分类,基本思想:通过加入一个含有解的先验知识的约束