1、 毕业论文 文献综述 化学工程与工艺 聚羧酸类高效水泥减水剂的研究 一、 前言 近年来 , 混凝土外加剂的研究与生产已趋向朝着高性能、无污染方向发展。混凝土减水剂是混凝土外加剂中应用面最广、使用量最大的一种。具有梳形分子结构的聚羧酸系高效减水剂因其减水率高、保坍性能好、掺量低、无污染、缓凝时间少、成本低等优异性能 , 适宜配制高强超高强混凝土、高流动性及自密实混凝土 , 成为国内外混凝土外加剂研究开发的热点 1-2。目前我国离工业化应用还有相当大的差距 , 许多国外大的外加剂公司竭力想占据中国市场 , 因而我们必须加大对新型 聚合物减水剂的研究 , 以便在混凝土外加剂市场竞争中处于有利地位。
2、减水剂是指能增加水泥浆流动性而不显著影响含气量的材料,它是混凝土外加剂中的最核心材料,是混凝土工程中应用最广泛的外加剂品种,其用量占到外加剂总用量的 80%以上,已成为混凝土除水泥、砂、石、水以外的第五种组成部分。减水剂属改善混凝土拌和物流变性能的外加剂之一。混凝土减水剂的主要功能就是在保持混凝土拌合物坍落度的前提下,减少拌合过程中的用水量,降低水灰比,改善混凝土拌合物的流变性能及提高水泥混凝土的强度。 一般认为 ,减水剂的发展可以大致分为三 个阶段,以木钙为代表的第一代普通减水剂阶段、以萘系为代表的第二代高效减水剂阶段以及以聚羧酸系为代表的第三代高性能减水剂阶段。第一、二代减水剂由于掺量大,
3、减水不够,水泥适应性不广,坍落度损失大,采用有毒物质为原料等问题而受到制约。 20 世纪 80年代初期出现的聚羧酸系高效减水剂被认为是第三代减水剂,它是当今国内外最新一代减水剂 , 它以其优异的性能 , 正成为世界性研究热点。 聚羧酸系高性能减水剂除具有高性能减水 (最高减水率可达 35% )、改善混凝土孔结构和密实程度等作用外,还能控制混凝土的塌落度损失,更好地控制混凝 土的引气、缓凝、泌水等问题。它与不同种类的水泥都有相对较好的相容性,即使在低掺量时 , 也能使混凝土具有高流动性,并且在低水灰比时具有低粘度及塌落度经时变化小的性能。因此可以预见,随着混凝土技术的发展,聚羧酸系减水剂以其优良
4、的性能必将得到更大的发展和应用, 聚羧酸系高性能减水剂是目前世界上处于科技最前沿的一种高性能减水剂,是减水剂发展史上的第三次重大突破。它具有以下独特的优点:低掺量、高减水增强率、和水泥的适应性好、凝土坍落度损失小,是一种安全的绿色环保型高性能减水剂 。 二、主题 1 历史背景 日本于 1981 年开始研制聚羧酸系高效减水剂 , 并于 1986 年将产品打入市场。目前 , 聚羧酸系高效减水剂的研究仍以日本发展较快 , 到 2001 年为止 , 聚羧酸系减水剂用量在 AE 减水剂中已超过了 80%, 主要生产厂商有日本的花王、竹本油脂、日本制纸、藤泽药品 3等。美国高效减水剂的发展比日本晚 , 目
5、前美国正从萘系、蜜胺系减水剂向聚羧酸系高效减水剂发展 4, 主要生产厂家有 MASTE 公司、 GRACE 公司等。另外国外还有意大利的 MADI 公司、瑞士 SIKA 公司等。国内对聚合物水泥减水剂的研究起步较晚 , 研发的产 品大多处于试验室研制阶段 ,可供合成聚羧酸系减水剂选择的原材料也极为有限 , 转向实际生产还有一定的距离。 一般认为 ,减水剂的发展可以大致分为三个阶段,以木钙为代表的第一代普通减水剂阶段、以萘系为代表的第二代高效减水剂阶段以及以聚羧酸系为代表的第三代高性能减水剂阶段。第一、二代减水剂由于掺量大,减水不够,水泥适应性不广,坍落度损失大,采用有毒物质为原料等问题而受到制
6、约。 20 世纪 80 年代初期出现的聚羧酸系高效减水剂被认为是第三代减水剂,它是当今国内外最新一代减水剂 , 它以其优异的性能 , 正成为世界性研究热点。 2 研究现状 聚羧酸系减水剂的研究进展 日本于 1981 年开始研制聚羧酸系高效减水剂 , 并于 1986 年将产品打入市场。目前 , 聚羧酸系高效减水剂的研究仍以日本发展较快 , 到 2001 年为止 , 聚羧酸系减水剂用量在 AE 减水剂中已超过了 80%, 主要生产厂商有日本的花王、竹本油脂、日本制纸、藤泽药品 3等。美国高效减水剂的发展比日本晚 , 目前美国正从萘系、蜜胺系减水剂向聚羧酸系高效减水剂发展 4, 主要生产厂家有 MA
7、STE 公司、 GRACE 公司等。另外国外还有意大利的 MADI 公司、瑞士 SIKA 公司等。 国内对聚合物水泥减水剂的研究起步较晚 , 研发的产品大多处于试验室研制阶段 ,可供合成聚羧酸系减水剂选择的原材料也极为有限 , 转向实际生产还有一定的距离。 聚羧酸系减水剂的合成方法 聚羧酸系减水剂的主要原料有不饱和酸 , 如马来酸酐、马来酸和丙烯酸、甲基丙烯酸等可聚合的羧酸 , 聚链烯基烃、醚、醇等烯基物质 , 聚苯乙烯磺酸盐或酯和 ( 甲基 ) 丙烯酸盐、酯、苯二酚、丙烯酰胺等 5, 合成方法大体上有可聚合单体直接共聚、聚合后功能化法和原位聚合与接枝等几种。 1 可聚合单体直接共聚 这种合成
8、方法一般是先制备具 有聚合活性的侧链大单体 ( 通常为甲氧基聚乙二醇甲基丙烯酸酯 ) , 然后将一定配合比的单体混合在一起直接采用溶液聚合而得成品。这种合成工艺看起来很简单 , 但前提是要合成大单体 , 中间分离纯化过程比较繁琐 , 成本较高。株式会社日本触媒公司 6采用短链甲氧基聚乙二醇甲基丙烯酸酯、长链甲氧基聚乙二醇甲基丙烯酸酯以及甲基丙烯酸三种单体直接共聚合成了一种高效减水而且坍落度保持性好的混凝土外加剂。 2 聚合后功能化法 该方法主要是利用现有的聚合物进行改性 , 一般是采用已知分子量的聚羧酸 , 在催化剂的作用下与聚醚在较 高温度下通过酯化反应进行接枝 , 但这种方法也存在很大的问
9、题 : 现成的聚羧酸产品种类和规格有限 , 调整其组成和分子量比较困难 ; 聚羧酸和聚醚的相容性不好 , 酯化实际操作困难 ; 另外 , 随着酯化的不断进行 , 水分不断逸出 , 会出现相分离。当然 , 如果能选择一种与聚羧酸相容性好的聚醚 , 则相分离的问题完全可以解决。 3 原位聚合与接枝 该方法主要是为了克服聚合后功能化法的缺点而开发的 , 以聚醚作为羧酸类不饱和单体的反应介质。该反应集聚合与酯化于一体 , 可以避免聚羧酸与聚醚相容性不好的问题。如T.Shawl 等 人 7把丙烯酸单体、链转移剂、引发剂的混合液逐步滴加到反应釜中 , 在 N2 保护下不断除去水分 ( 约 50min) ,
10、 催化升温 , 反应 1 h,进一步接枝得到成品。这种方法虽然可以控制聚合物的分子量 , 但主链一般只能选择含 - COOH 基团的单体 , 否则很难接枝 , 且这种接枝反应是个可逆平衡反应 , 反应前体系中已有大量的水存在 , 其接枝度不会很高且难以控制。这种方法工艺简单 , 生产成本较低 , 缺点是分子设计比较困难。 目前我国大多采用的方法是聚合单体直接共聚法 , 如复旦大学教育部聚合物分子工程开放试验室的 胡建华等人 8在氧化还原的引发体系中 , 分别将聚乙二醇、马来酸酐、丙烯酸、 AMPS、丙烯酸羧丙酯、醋酸乙烯酯聚合成含羧基、羧基、磺酸基多官能团的共聚物和链含羧基、羧基、磺酸基多官能
11、团、支链含醚基的多官能团的聚羧酸系共聚物。 3 聚羧酸类减水剂分子结构与性能的关系 聚羧酸系减水剂的分子结构设计是在分子主链或侧链上引入强极性基团羧基、磺酸基、聚氧化乙烯基等 , 使分子具有梳型结构 , 通常可用图 1 表示聚羧酸系减水剂的化学结构。 3.1 磺酸基团含量的影响 Yamada9研究了聚羧酸系减水剂 PEO 链长度、分子聚合度、羧基和磺酸盐基团的构成比与含量对水泥浆分散性的影响 , 结果表明 PEO 侧链越长 , 聚合度越小 , 磺酸基团含量越多 ,减水剂对水泥的分散作用就越好。带羧基、磺酸基、聚氧化乙烯链酯基的单体聚合体系中 , 增加磺酸基有利于提高分散性 , 但超过一定量后对
12、分散性无影响。王国建等 10采用苯乙烯、丙烯酸、端羧基聚氧 乙烯基醚通过自由基溶液共聚合、接枝和磺化反应制得一类主链有羧基、磺酸基和聚氧乙烯基醚侧链的聚羧酸系高效减水剂 , 研究表明随着磺化度的提高即磺酸基团含量的增加 , 减水剂对水泥颗粒的分散性能提高。 3.2 侧链长度的影响 陈明凤等 11采用聚氧乙烯基烯丙酯大单体与丙烯酸、甲基丙烯磺酸钠通过共聚得到不同侧链长度的聚羧酸减水剂 , 其中 JH23 符合缓凝减水剂的性能要求 , 而且研究表明侧链较长的聚羧酸减水剂对水泥净浆的流动度保持有利。 3.3 相对分子质量的影响 作为一种分散剂 , 聚合物的相对分子量对其分散 性有重要的影响。因为聚羧
13、酸类减水剂属于阴离子表面活性剂 , 相对分子量过大会使体系黏度增大 , 不利于水泥粒子分散 , 聚合物分散性能不好。但相对分子量太小 , 则聚合物维持坍落度能力不高。胡建华 12经过试验认为聚合物的减水率随相对分子量的增大先增大 , 到一定值后又减小。 不仅减水剂的相对分子量对其性能有影响 , 其相对分子质量分布对其分散性能也有一定的影响。 Tanaka13通过 GPC 法测定相对分子质量分布 , 取曲线最高峰值为 Mp, 认为要获得高分散性的减水剂还应使 ( Mw-Mp) 大于 0 且小于 7 000 为最佳。 3.4 硫酸盐含量的影响 水泥中硫酸盐的含量对水泥的流动性和分散性也有一定的影响
14、。 Kazuo Yamada 等 14认为如果水泥中的硫酸盐含量提高 , 聚羧酸减水剂和硫酸根离子对水泥表面的吸收是相互竞争 , 用聚羧酸减水剂作减水剂的水泥流动度下降。研究还发现 ,当硫酸根离子存在时可显著减少聚羧酸外加剂在水泥表面的吸收 , 导致分散效果差。 4 聚羧酸类减水剂的作用机理 减水剂掺入新拌混凝土中 , 能够破坏水泥颗粒的絮凝结构 , 起到分散水泥颗粒及水泥水化颗粒的作用 , 从而释放絮凝结构中的自由水 , 增大混凝土拌合物的流动性。高效减水剂大都属于阴离子型表面活性剂 , 掺入水泥浆体中吸附在水泥粒子表面 , 并离解成亲水和亲油作用的有机阴离子基团。但目前聚羧酸类减水剂的作用
15、机理尚未完全清楚 , 概括起来基本包括以下几种观点 : ( 1)“空间位阻学说 ”, 以 Mackor 熵效应理论为基础 , 认为空间位阻作用取决于高效减水剂的结构和吸附形态或者吸附层厚度等 15。聚合物减水剂吸附在水泥颗粒表面 , 在水泥颗粒表面形成一层有一定厚度的聚合物分子吸附层。当两个有聚合物分子吸附层的颗粒接近时 ,在颗粒表面间的距离小 于吸附层厚度的两倍时 , 两个吸附层就产生相互作用 , 产生熵效应和渗透斥力效应 , 从而保持颗粒间的分散稳定性。该类减水剂分子骨架为主链和较多的支链组成 , 主链上含有较多的活性基团 , 并且极性较强 , 依靠这些活性基团 , 主链可以 “锚固 ”在
16、水泥颗粒上 , 侧链具有亲水性 , 可以伸展在液相中 , 从而在颗粒表面形成庞大的立体吸附结构 , 产生空间位阻效应 , 从而使水泥颗粒分散并稳定。 ( 2) 聚羧酸高效减水剂大分子链上一般都接枝不同的活性基团 , 如具有一定长度的聚氧乙烯链、羧基 ( - COOH) 、磺酸基 ( - SO3H) 、羧基 ( - OH) 、胺基 ( - NH2) 和聚氧烷基 ( - O- R) n 等极性基团可通过吸附、分散、润湿、润滑等表面活性作用 , 能对水泥颗粒产生分散和流动作用 , 并通过减少水泥颗粒间摩擦阻力 , 降低水泥颗粒与水界面的自由能来增加新拌混凝土的和易性。羧酸根离子使水泥颗粒带上的负电荷
17、在水泥颗粒之间产生静电排斥作用并使水泥颗粒分散 , 增大水泥颗粒与水的接触 ,使水泥充分水化。在扩散水泥颗粒的过程中 , 放出凝聚体所包围的游离水 , 改善了和易性 , 减少了拌水量。 ( 3) 减水剂对水泥粒子产生齿形 吸附 , 结构中的醚键与水分子可以形成氢键 , 从而形成亲水性立体保护膜 , 该保护膜也进一步保证了粒子的分散稳定性 , 但这些机理还有待进一步研究和验证。 ( 4) R-COO- 与 Ca2+ 离子作用形成络合物 , 降低溶液中的 Ca2+离子浓度 , 延缓 Ca( OH) 2 形成结晶 , 减少 C- H- S 凝胶的形成 ,延缓了水泥的水化。 5 聚羧酸类高效减水剂的发
18、展方向 聚羧酸系减水剂的研究发展很快 , 但对聚羧酸系减水剂的合成、作用机理探讨等方面只是建立在合理推测阶段 , 存在很多无法预测的因素 , 不少理论尚待深 入研究论证。但由于聚羧酸混凝土减水剂独特的优点 , 将减水和保坍两个组分的功能团合二为一 , 克服了外加剂行业长期以来依靠缓凝剂和保坍剂复配混凝土泵送剂的缺点。所以分析聚羧酸高效减水剂的分子结构和性能的关系 , 研究合成步骤和控制结构的方法 , 对推动我国混凝土外加剂的合成研究和生产意义重大。 随着高分子合成、分子结构表征及现代检测技术的提高 , 通过嫁接方式 , 将带活性基团的侧链直接嫁接到聚合物的主链上 ,使其同时具有高效减水、控制坍
19、落度损失和抗收缩、不影响水泥的凝结硬化等多种功能。尽管系统研究新型高效减水剂仍存在很 多困难 , 但世界各国都在积极研究和应用聚羧酸系减水剂。可以肯定 , 嫁接技术用于聚羧酸系减水剂生产将是对传统减水剂合成技术的突破 ,具有广阔的发展前景 , 聚羧酸系减水剂将进一步朝着高性能、多功能化、生态化、国际化的方向发展。 由于聚羧酸系减水剂在分子结构上可调整余地大,制造技术可控制的参数也多,因此高性能化的潜力大,可以对其分子结构并调整其工艺参数来进行高计,并重点进行以下几个方面的研究:对高减水率、高保坍、低缓凝、低引气的聚合物进行分子设计;具有聚合活性的聚氧乙烯 (或丙烯 )类大单体的合成研究;优化单
20、体的配比 ,降低原料成本及简化生产工艺;梳形聚合物的主链和支链的结构对减水、引气、缓凝的影响 ;减水增强作用机理及应用技术的研究。 三、总结 聚羧酸类高效水泥减水剂的应用非常广大,对于水泥的作用以及对应的房屋,桥梁都是非常具有好的前景,应该推广该减水剂的研究与应用。 四、参考文献 1 刘治猛 , 罗远芳 , 刘煜平 , 等 .新型聚羧酸类高效减水剂的合成及性能研究 J.化学建材 , 2003( 4) : 15- 18. 2 卞荣兵 , 沈健 .聚羧酸混凝土高效减水剂的合成和研究现状 J.精细化工 , 2006, 23( 2) : 179- 182. 3 姜国庆 .日本高性能 AE 减水剂的研究
21、进程及应用现状 J.化学建材 , 2000( 2) : 42- 44. 4 王耶 .美国混凝土化学外加剂标准及应用现状 J.中国建材科技 ,2001( 2) : 30- 31. 5 李崇智 , 等 .高性能减水剂的研究现状与展望 J.混凝土与水泥制品 ,2001( 2) : 3- 6. 6 HIRATA T, et al.Cementitious composition comprising acrylic copolymers:EP, 0792850AP.1997. 7 SHAWL E T, ZHOUXin- han.Method ofmaking a water reducing addi
22、tivefor cement: US, 5985989P.1996- 11- 16. 8 徐小军 , 胡建华 , 杨武利 , 等 .丙烯酸酯类微凝胶的制备及其表征 J.复旦学报 : 自然科学版 , 1998, 37( 3) : 265- 270. 9 YAMADA K, et al.Effects of the chemical structure on the propertiesof polycarboxylate- type superplasticizerJ.Cement and Concrete Research,2000, 30( 2) : 197- 207. 10王国建 , 黄韩
23、英 .聚羧酸盐高效减水剂的合成与表征 J.化学建材 ,2003( 6) : 47- 51. 11陈明凤 , 张华洁 , 彭家惠 , 等 .聚羧酸减水剂的合成与性能 J.化学建材 , 2005, 21( 2) : 53- 55. 12胡建华 , 等 .聚羧酸系高效减水剂的合成与分散机理研究 J.复旦学报 : 自然科学版 , 2000, 39( 4) : 463- 466. 13TANAKA Y, OHTA A, et al.Fluidity control of cementitious compositions:US, 5661206P.1997. 14YAMADA K, OGAWA S, H
24、ANEHARA S.Controlling of the adsorptionand dispersing force polycarboxylate - type superplasticizer by sulfateion concentration in aqueous phaseJ.Cement and Concrete Research,2001, 31( 3) : 375- 383. 15冯中军 , 傅乐峰 , 沈军 , 等 .聚羧酸高效减水剂的结构与性能关系研究 J.化学建材 , 2006, 22( 2) : 39- 42. 16 王明丽 ,管学茂 ,张家彬 .聚羧酸系高效减水剂
25、合成工艺研究现状 J.混凝土 .2007,212(6):6567 17 马军委 , 张海波 , 张建锋等 .聚羧酸系高性能减水剂的研究现状与发展方向 . 国外建材科技 J.2007,28(1): 2428 18 汪海平 ,陈正国 .聚羧酸类高效减水剂的研究现状与发展方向 .胶体与聚合物 J.2004,23(4):3133 19 冉千平 ,游有鲲 ,周伟玲 .聚羧酸类高效减水剂现状及研究方向 .新型建筑材料 J.2001,( 12): 2527 20 李崇智 ,冯乃谦 , 李永德 .聚羧酸类高性 能减水剂的研究进展 .化学建材 J.2001, (6): 3841 21 张恂 ,顾丽瑛 ,张洪涛 .国内聚羧酸系高性能减水剂的合成及研究状况 . 胶体与聚合物 .2007,25(24):547 22 姜莉 ,殷平福 ,朱杰 .聚羧酸系高效减水剂在商品混凝土中的应用 .江苏建材 J.2007,(3):3234