线性代数常见证明题型及常用思路仅供参考!二、证明题题型1关于线性相关性的证明中常用的结论(1)设,然后根据题设条件,通过解方程组或其他手段:如果能证明必全为零,则线性无关;如果能得到不全为零的使得等式成立,则线性相关。(2)线性相关当且仅当其中之一可用其他向量线性表示。(3)如果,则可通过矩阵的秩等方面的结论证明。(4)如果我们有两个线性无关组,且是同一个线性空间的两个子空间,要证线性无关。这种情况下,有些时候我们设。根据题设条件往往能得到,进而由的线性无关得到系数全为零。题型2. 关于欧氏空间常用结论(1)内积的定义(2)单位正交基的定义(3)设是单位正交基,。则5题型3. 关于矩阵的秩的证明中常用的结论(1)初等变换不改变矩阵的秩(2)乘可逆矩阵不改变矩阵的秩(3)阶梯形的秩(4)几个公式(最好知道如何证明):常用来证明关于秩的不等式(5)利用分块矩阵的初等变化不改变矩阵的秩(常用来证明关于秩的不等式)例:证明:。证:上面第二个等号是用左乘第一个分块矩阵的第一